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paper draft on arXiv Fast-FSSP-mimicking analysis...

We present a series of Large Eddy Simulations (LES) employing
http:/ /arxiv.org/pdf/1205.3313 the Super-Droplet Method (SDM) for representing aerosol, cloud
and warm-rain microphysics (Shima, 2008; Shima et al., 2009).
SDM is a particle-based and probabilistic Monte-Carlo type model.

varying grid resolution
comments welcome! (sarabas@igf.fuw.edu.pl)

simulation set-up The model does not differentiate between aerosol particles, cloud
droplets, drizzle or rain drops. Each particle in the model (referred

RICO composite case (Van /anten et al. 2011) to as super-droplet) represents a multiplicity of real-world particles

Nagoya University Cloud-Resolving Storm of the same size and of the same chemical composition.

: : The super-droplets are subject to (i) gravitational settling, (ii)
Simulator (CReSS, Tsuboki, 2008) condensational growth /evaporation and (iii) collisional growth.
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list of model runs salient features of the Super-Droplet approach

run label grid | dx=dy | dz time-steps [s] | sd density [cm™]
sdm-coarse-8 | 64 x 64 x100 | 100m |40m | 1.00/0.100/0.25/1.0/1.0 2.0x107

sdm-coarse-32 | 64 x 64 x100 | 100m | 40m |1.00/0.100/0.25/1.0/1.0  8.0x10~ : : :
sdm-coarse-128 | 64 x 64 x100| 100m | 40m | 1.00/0.100/0.25/1.0/1.0|  3.2x10710 diffusive error-free ComPUtat|Ona| scheme for both

sdm-coarse-512 | 64 x 64 x100| 100m | 40m | 1.00/0.100/0.25/1.0/1.0|  1.3x10~% d : | : : | d
sdm-middle-8 | 128x128x200| 50m | 20m | 0.50/0.050/0.25/1.0/1.0 |  1.6x10~1 condensationa (mOVlng'SeCUOna tyoe) an

sdm-middle-32 | 128x128x200| 50m | 20m | 0.50/0.050/0.25/1.0/1.0 6.4x10710 . . : : 60 100 5101520 0 05
sdm-middle-128 | 128x128x200 | 50m | 20m | 0.50/0.050/0.25/1.0/1.0 2.6x10~% collisiona gl’OWth (I\/Ionte—Carlo type) S=RH-1[%]  CONC[om3]  foylum) LWG [gim®}
sdm-high-8 256x256x400 | 25m | 10m|0.25/0.025/0.25/1.0/0.5|  1.3x10~%

The run label denotes which grid resolution (coarse, middle or high) and super-droplet pa rt|C|e S DeCtru m representatlon faC| I |tat| ng
number density was chosen. Coarse resolution corresponds to a quarter of the domain from

the original RICO set-up (i.e. grid box size of 100x100x40 m with 64 x64x100 grid points); com pa riSOn W|th experimenta| data Obtained W|th

the middle and high resolutions denote settings resulting in halved and quartered grid box

dimensions, respectively (with the domain size kept constant). For each simulation there are pa rtiC|e—COu nt| ng inStru ments

five time-steps defined: long and short time-step of the Eulerian component (the short one

used for sound-wave terms), the time-step used for integrating the condensational perSIS-tence Of 3 rbitra ry num ber Of SCQ |a r q ua ntlties

growth /evaporation equation, the time-step used for solving collisional growth using the

Monte-Carlo scheme, and the time-step for integration of particle motion equations. aSS|gned tO 3 sU per_d I‘Op|et (eg CC N phyS|CO-

OAP-2DS mimicking analysis chemical properties)
scalability in terms of sampling error
(i.e. super-droplet density)
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parameterisation-free formulation of the key i s
processes involved in cloud-aerosol interactions =—=1 = = ==
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Figures present height-resolved statistics of the vertical velocity w, the
/ supersaturation S, cloud droplet concentration CDNC, droplet effective radius rg,

sdm-high8 liquid water content LWC, the cubed ratio of mean volume radius to effective

sdm-coarse-512

sdm-coarse-128 ] 2-moment p-physics:

1 1 radius k =< r3 > /reff, and the standard deviation of cloud droplet radius o,.
sdm-coarse-32 q \ g \
sdm-middle-32 Cr"7Cr ™Mr» '%r

n 2 The plots are intended for comparison with the analysis presented in Arabas et al.
sdm-coarse-

sim-middies — R S I I \ (2009, Figs. 1 and 2) where the data from aircraft measurements during the

T bin H-phyS.iC51 COnC?ntratif)n density N(r) RICO campaign using the Fast-FSSP optical cloud droplet spectrometer
pertet dameter b .approx_lmated W_'th a histogram . (Brenguier et al., 1998) were analysed. The herein analysis of SDM simulation
The figure is intended for comparison with Fig. 4 in Baker et al. (2009) based (i.e./defined for discrete drop radii r; data is constrained to in-cloud regions defined as the grid boxes having CDNC>

on measurement data obtained with the OAP-2DS instrument (Lawson et al., . 20 cm™3 where CDNC is derived by summing over the super-droplets representing
2006) during RICO research flights. During RICO the OAP-2DS instrument was pa rticle-based H—phyS|CS: particles of radius between 1 and 24 micrometres.
set to classify particles into 61 size bins spanning the 2.5 ym — 1.5 mm size ~10° "super-droplets" ofivariable radii, The choic.es. of the CDNC threshold and the spectral range correspond to those
range in radius. In the analysis of Baker et al. (2009) a mean size spectrum was at variable coordinates (x,y,2) charac?terlstlc of the Fast-FSSP probe. Plot construction method was chosen
derived from 237 spectra measured within rain-shafts below the cloud base at following the methodology of Arabas et al. (2009). For each level of the model
the altitude of about 183 metres (600 ft). In order to derive comparable grid and each plotted parameter a list of values matching the in-cloud criterion is
quantities from the simulation results, the super-droplets in each grid cell were constructed, sorted and linearly interpolated to find the 5, 25, 45t 55t 75t
classified into size bins of the same layout as used by the OAP-2DS instrument, . . . and 95 percentiles. The lists are constructed from the LES-grid values (w, S) or
an altitude range of 183 & 100 m was chosen, and only grid cells with rain physico-chemical properties super-droplet statistics calculated for each grid cell (CDNC, rgr, LWC, k and o).
water mixing ratio g, > 0.001 g/kg were taken into account (g, being derived | The 5t — 95t percentile, the interquartile, and the 45" — 55" percentile ranges
from summation over super-droplets with radii greater than 40 um). reality: ~10'*"'* particles of different sizes are plotted as a function of height using red, green and blue bars, respectively.
(aerosol, cloud, drizzle, rain particles)

(I.e. not assigned to a given grid box)
each "super-droplet" representing
a number of real particles of the same

selected previously-published analyses of RICO in-situ cloud microphysics aircraft observations

Baker et al. 2009 (OAP-2DS probe) Brenguier et al. 2011 (Fast-FSSP probe) |l Arabas et al. 2009 (Fast-FSSP probe)
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Effective radius and droplet spectral width from in-situ aircraft

. . ‘ . . i observations in trade-wind cumuli during RICO
Drop Size Distributions and the Lack of Small Drops in RICO Rain Shafts
S. Arabas,l H. Pawlowska,] and W. W. Grabowski>
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Received: 3] Table 4. Summary of the data set with for each flight the mean and standard deviation o of CDNC {N}and k values (&}, the k* value, the droplCl §
Revised: 26 ratio of k* to (k), the Nact parameter, the ratio N/N;m. the mean LWC adiabatic fraction {qc/qw{]:\ and the cumulated length of cloudy

samples L. The last line for each data set shows the mean values, except for the last column that shows the total length of cloudy samples.

Fast-FSSP measurements are used for all flights except DYCOMS-1I on 24, 25 and 27 July for which the SPP-100 is used.
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Figure 1. Statistics of droplet-spectrum and concentration measurements from RICO flights rf06, rf07, rf09, and rfl2 as a second
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