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MPDATA in a nutshell (Smolarkiewicz 1983, 1984, . . . )
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MPDATA: reverse numerical diffusion by integrating the
antidiffusive flux using upwind (in a corrective iteration)
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Key characteristics of MPDATA:

I positive definiteness (non-negativity of option price solutions by design,
alternative “infinite gauge” formulation for variable-sign ψ)

I monotonicity (no spurious oscillations in the solutions
with the “flux corrected transport” option)

I conservativeness and high-order accuracy (second-order in time and space
for the basic MPDATA, third-order option available)

I multidimensionality (i.e., antidiffusive fluxes include cross-dimensional
terms, as opposed to dimensionally-splitted schemes)

Recent MPDATA developments:

I Unstructured meshes, antidiffusive-flux-controlled mesh adaptivity,
and many more (for a review, see Smolarkiewicz, Szmelter, et al., 2016)

I Open-source C++ library: Jaruga, Arabas, et al., 2015

Black-Scholes  (“advection-only”) transport problem
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Convergence analysis (second-order in time and space)

I Test case: interest-rate corridor valuation (Fig 1)

I Truncation error estimation (ψa: B-S formula):

E =

√√√√ nx∑
i=1

[ψn(xi)− ψa(xi)]2 /(nx · nt)

∣∣∣∣∣
t=0

I Time- and space-convergence rates: Fig 2 & Fig 3

I MPDATA (libmpdata++) settings used:
I one corrective iteration
I non-oscillatory option (fct)
I infinite gauge (iga)
I divergent-flow option (dfl, needed for second-order in time!)

Stability condition (for divergent velocity field)
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(twice more stringent than for the standard first-order-in-time FTCS scheme)

main takeaway: robust explicit alternative to Crank-Nicholson
aptly suited for multi-dimensional problems

Fig. 1: Interest rate corridor valuation
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Discretised terminal condition (discounted payoff)
Numerical solution for t=0
Analytical solution for t=0

Comparison of a numerical solution obtained with MPDATA with the

corresponding analytical solution (i.e., the Black-Scholes formula).

Instrument parameters: a bought option with strike K1 = 0.75% and a

sold option with strike K2 = 1.75%, 6-month tenure (time to expiry),

risk-free rate r = 0.8%, volatility σ = 0.6.

Fig. 2: Solution accuracy in terms of the spatial discretisation
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Truncation error as a function of the Courant number C = u∆t
∆x which,

for fixed λ2, is proportional to the gridstep. Thin lines correspond to

the basic upwind scheme (first iteration of MPDATA only), thick lines

correspond to results obtained with one corrective iteration of

MPDATA. Three datasets plotted for three different values of λ2. The

dotted and solid black lines depict the slopes corresponding to

first-order and second-order convergence.

Fig. 3: Solution accuracy in terms of the temporal discretisation
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Truncation error as a function of the λ2 parameter which, for fixed C ,

is proportional to the timestep. Three datasets plotted for three

different values of C (values given approximately as the solution

procedure adjusts the requested value so that the number of timesteps

is an integer). Other plot elements are as in Fig. 2.
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