A particle-based microphysics study of isotope exchanges in a single-column rain-shaft model

Sylwester Arabas, Kazimierz Różański (& Sanket Bhiogate - PhD cand. recently joined)

AGH University in Krakow, Poland

104th AMS Annual Meeting | Baltimore, MD | Jan 29 2024

< Networks

The Global Network of Isotopes in Precipitation (GNIP) is a worldwide isotope monitoring network of hydrogen and oxygen isotopes in precipitation, initiated in 1960 by the international Atomic Energy Agency (IAEA) and the World Meteorological Organization (WMO), and operates in cooperation with numerous partner institutions in Member States.

Access the Network

IAEA/GNIP site in Kraków

The slobal Network of stotopes in Precipitation (GNIP) is a worldwide isotope monitoring network of hydrogen and oxygen isotopes in precipitation, initiated in 1960 by the international Atomic Energy Agency (AEA) and the World Meteorological Organization (WMO), and operates in cooperation with numerous partner institutions in Member States. the Network

- IAEA/GNIP site in Kraków
- 50-year precip isotopic data record

- IAEA/GNIP site in Kraków
- 50-year precip isotopic data record
- high-altitude lab (clouds in-situ)
 @Kasprowy Wierch (6500 ft AMSL)

photo: naukaoklimacie.pl

water isotopologues (stable): H₂O (99.7%), H₂¹⁸O (0.2%), H₂¹⁷O (0.04%), HDO (0.03%),

$$M_d = 18.01528 \text{ g/mol}$$

- Water isotopologues (stable): H₂O (99.7%), H₂¹⁸O (0.2%), H₂¹⁷O (0.04%), HDO (0.03%),
- condensation "favors" heavy over light isotopologues (evaporation vice versa)
 - \rightsquigarrow equilibrium fractionation
 - → more pronounced in colder temperatures
 - \rightsquigarrow larger (×8) effect for H than O

graphic: scisnack.com

- water isotopologues (stable): H₂O (99.7%), H₂¹⁸O (0.2%), H₂¹⁷O (0.04%), HDO (0.03%), ...
- condensation "favors" heavy over light isotopologues (evaporation vice versa)
 → equilibrium fractionation
 → more pronounced in colder temperatures
 → larger (×8) effect for H than O
- differences in diffusivity in air

→ non-equilibrium (kinetic) fractionation
 → applies to sub- and super-saturated conditions (+ liq/ice)
 → more pronounced for O than H

 $\epsilon_{\rm kin} pprox n \cdot \epsilon_{
m diff} \cdot (1 - RH)$

 ϵ_{kin} kinetic fractionation coeff. *n* turbulence parameter ϵ_{diff} diffusive fractionation coeff. RH rel. humidity

- water isotopologues (stable): H₂O (99.7%), H₂¹⁸O (0.2%), H₂¹⁷O (0.04%), HDO (0.03%),
- condensation "favors" heavy over light isotopologues (evaporation vice versa)
 equilibrium fractionation
 more pronounced in colder temperatures
 - \rightsquigarrow larger ($\times 8)$ effect for H than O

graphic: physics-in-a-nutshell.com

- water isotopologues (stable): H₂O (99.7%), H₂¹⁸O (0.2%), H₂¹⁷O (0.04%), HDO (0.03%),
- condensation "favors" heavy over light isotopologues (evaporation vice versa)
 ~ equilibrium fractionation
 ~ more pronounced in colder temperatures
 - \rightsquigarrow larger (×8) effect for H than O

- freezing "freezes" the isotopic composition of water

graphic: physics-in-a-nutshell.com

- water isotopologues (stable): H₂O (99.7%), H₂¹⁸O (0.2%), H₂¹⁷O (0.04%), HDO (0.03%),
- condensation "favors" heavy over light isotopologues (evaporation vice versa)
 ~ equilibrium fractionation
 ~ more pronounced in colder temperatures
 - \rightarrow larger (×8) effect for H than O

- Freezing "freezes" the isotopic composition of water
- isotope-aware μ-physics models in ice isotopic data analysis

graphic: physics-in-a-nutshell.com

let's equip a particle-based µ-physics package with isotope fractionation model!

Search pro	jects	Q			
PySDM 2.40	٥				Latest version Released: Jan 22, 2024
Pythonic particle-based (super prescribed-flow examples in P	r-droplet) warm-rain/aqueous ython, Julia and Matlab	-chemistry cloud micro	physics package	e with box, pa	arcel & 1D/2D
Navigation	Project descript	ion			
Project description	PySDM				
Release history Download files	Maintained? yes Open He Built Standard (Second Second Seco	PySOM JOSS 10,211 PySOM JOSS 10,211 PL Funding by NCN	👌 Linux 🔽 😫 ma 105-joss.03219 DO US DOE Funding b	cOS Z Wind 10.5281/zerod y ASR	36ws / Jupyter /
Project links	License GPL v3 C tests+artifacts+pypi per pypi package 2.40 Art d	ssing 🔗 build passing 🌳 e	codecov 82%		

particle diffusional growth/evaporation (incl. CCN activation)

- particle diffusional growth/evaporation (incl. CCN activation)
- collisional growth and breakup (Monte-Carlo, SDM)

- particle diffusional growth/evaporation (incl. CCN activation)
- collisional growth and breakup (Monte-Carlo, SDM)
- aqueous-phase oxidation of SO₂ by H₂O₂ and O₃

- particle diffusional growth/evaporation (incl. CCN activation)
- collisional growth and breakup (Monte-Carlo, SDM)
- aqueous-phase oxidation of SO₂ by H₂O₂ and O₃
- immersion freezing (Monte-Carlo, ABIFM)

Search proje	cts	۹			
PySDM 2.40	2				✓ Latest version Released: Jan 22, 2024
Pythonic particle-based (super- prescribed-flow examples in Pyt	droplet) warm-rain/aqueous-c hon, Julia and Matlab	hemistry cloud micro	physics package	e with box, pa	arcel & 1D/2D
Navigation	Project descripti	on			
E Project description	PySDM				
Release history	💮 Pythen 🗿 👽 LLVM Nam	ba 🔄 CUDA ThrustRTC	👌 Linux 🔽 🍓 ma	105 / 💽 Wine	jows 🖌 😴 jupyter 🚧
🛓 Download files	Maintained? yes Open Hub	PL Funding by NCN	US DOE Funding b	10.5281/zenoc y ASR	10.10549422
Project links	License GPL v3	ng 📀 build passing 👘	codecov 82%		

- particle diffusional growth/evaporation (incl. CCN activation)
- collisional growth and breakup (Monte-Carlo, SDM)
- aqueous-phase oxidation of SO₂ by H₂O₂ and O₃
- immersion freezing (Monte-Carlo, ABIFM)
- Features 0D, 1D and 2D example simulation setups

Search project	ts	Q			
PySDM 2.40					Latest version Released: Jan 22, 2024
Pythonic particle-based (super-dr prescribed-flow examples in Pyth	oplet) warm-rain/aqueous-che on, Julia and Matlab	mistry cloud microphysi	cs packag	e with box, pa	arcel & 1D/2D
Navigation	Project descriptior	ı			
E Project description	PySDM				
Release history	Pythen 3 👽 LLVM Numba		x 🖌 🎕 mi	cOS / Wind	Sows 🖌 🛒 Jupyter 🛃
🛓 Download files	Maintained? 3985 Open Hub F	ySOM JOSS 10.21105joss PL Funding by <mark>NCN</mark> US D	03219 DC OE Funding I	I 10.5281/zerod ry ASR	6.10549422
Project links	License GPL v3	O build passing Codecov	82%		

- particle diffusional growth/evaporation (incl. CCN activation)
- collisional growth and breakup (Monte-Carlo, SDM)
- aqueous-phase oxidation of SO₂ by H₂O₂ and O₃
- immersion freezing (Monte-Carlo, ABIFM)
- features 0D, 1D and 2D example simulation setups
- 100% Python code (LLVM via Numba + GPU)

PySDM: Jupyer notebooks reproducing results from literature

literature reference	cond/evap	coalescence	isotopes	breakup	transport	chemistry	freezing	keywords
formulae-only	formulae-only							
Pierchala et al. 2022			×					#lab-experiment
OD box environment								
Berry 1967		х						#kernels
Shima et al. 2009		х						#analytic-solution
Alpert & Knopf 2016							×	#ABIFM
Bieli et al. 2022		х		×				#ML
de Jong et al. 2023		х		×				#analytic-solution
OD parcel environment								
Rozanski & Sonntag 1982	×		×					#iterative-parcel
Abdul-Razzak & Ghan 2000	×							#parameterisation
Kreidenweis et al. 2003	×					×		#Hoppel-gap
Arabas and Shima 2017	×							#timescales
Jaruga & Pawlowska 2018	×					×		#Hoppel-gap
Yang et al. 2018	х							#ripening
Lowe et al. 2019	×							#surfactants
Grabowski and Pawlowska 2023	×							#ripening
1D single-column kinematic env.								
Shipway & Hill 2012	×	х			×			#KiD
deJong et al. 2023 (figures 6-8)	×	х		×	×			#KiD
2D prescribed-flow environment								
Arabas et al. 2015	×	х			х			#GUI
Arabas et al. 2023 (figure 11)	x	x			х		x	#Paraview

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022

new PySDM "example" (incl. numerous automated tests) based on:

doi:10.1016/j.gca.2022.01.020

Geochimica et Cosmochimica Acta 322 (2022) 244-259

www.elsevier.com/locate/gca

Quantification the diffusion-induced fractionation of ${}^{1}\mathrm{H}_{2}^{17}\mathrm{O}$ isotopologue in air accompanying the process of water evaporation

Anna Pierchala*, Kazimierz Rozanski, Marek Dulinski, Zbigniew Gorczyca

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland

Received 25 February 2021; accepted in revised form 15 January 2022; Available online 24 January 2022

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022

fractionation upon evaporation (incl. kinetic effects)

- fractionation upon evaporation (incl. kinetic effects)
- multi-day experiments (up to two weeks)

- fractionation upon evaporation (incl. kinetic effects)
- multi-day experiments (up to two weeks)
- Picarro L2140-i cavity ring-down laser spectrometer (D, ¹⁸O, ¹⁷O) (probing vaporized water)

- fractionation upon evaporation (incl. kinetic effects)
- multi-day experiments (up to two weeks)
- Picarro L2140-i cavity ring-down laser spectrometer (D, ¹⁸O, ¹⁷O) (probing vaporized water)
- constant T/RH, variable T or variable RH setups

- fractionation upon evaporation (incl. kinetic effects)
- multi-day experiments (up to two weeks)
- Picarro L2140-i cavity ring-down laser spectrometer (D, ¹⁸O, ¹⁷O) (probing vaporized water)
- constant T/RH, variable T or variable RH setups
- analysis against Rayleigh distillation + Craig-Gordon RH-dependence

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/open-atmos/PySDM.git/main?urlpath=lab/tree/examples/PySDM_examples/Pierchala_et_al_2022

8/14

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

new PySDM "example" (work in progress):

doi:10.3402/tellusa.v34i2.10795

Tellus (1982), 34, 135-141

Vertical distribution of deuterium in atmospheric water vapour

By K. ROZANSKI¹ and C. SONNTAG, Institute of Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 366, D-6900 Heidelberg, F. R. Germany

(Manuscript received September 26, 1980; in final form May 12, 1981)

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

Fig. 3. Schematic diagram of the multibox cloud model. Input data: initial temperature, $T_{p,i}$ final temperature, $T_{k,i}$ initial pressure, $P_{p;}$ relative humidity, H; initial isotopic composition of water vapour, R_0 ; cloud water mixing ratio, N_L ; temperature step, S; isotope exchange factor, K.

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

Fig. 3. Schematic diagram of the multibox cloud model. Input data: initial temperature, T_p ; final temperature, T_k ; initial pressure, P_0 ; relative humidity, H; initial isotopic composition of water vapour, R_0 ; cloud water mixing ratio, N_L ; temperature step, S; isotope exchange factor, K.

Tellus 34 (1982), 2

hydrostatic/adiabatic rainshaft with precip removal

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

Fig. 3. Schematic diagram of the multibox cloud model. Input data: initial temperature, T_{μ} ; final temperature, T_{k} ; initial pressure, P_{0} ; relative humidity, H; initial isotopic composition of water vapour, R_{0} ; cloud water mixing ratio, N_{L} ; temperature step, S; isotope exchange factor, K.

Tellus 34 (1982), 2

hydrostatic/adiabatic rainshaft with precip removal

condensation: saturation adjustment

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

Fig. 3. Schematic diagram of the multibox cloud model. Input data: initial temperature, T_{μ} ; final temperature, T_{k} ; initial pressure, P_{0} ; relative humidity, H; initial isotopic composition of water vapour, R_{0} ; cloud water mixing ratio, N_{L} ; temperature step, S; isotope exchange factor, K.

- hydrostatic/adiabatic rainshaft with precip removal
- condensation: saturation adjustment
- rain formation: liquid water content threshold

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

Fig. 3. Schematic diagram of the multibox cloud model. Input data: initial temperature, T_p ; final temperature, T_k ; initial pressure, P_0 ; relative humidity, H; initial isotopic composition of water vapour, R_0 ; cloud water mixing ratio, N_L ; temperature step, S; isotope exchange factor, K.

- hydrostatic/adiabatic rainshaft with precip removal
- condensation: saturation adjustment
- rain formation: liquid water content threshold
- parcel-model iterations towards stationary state (no explicit role of time)

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

Fig. 3. Schematic diagram of the multibox cloud model. Input data: initial temperature, T_p ; final temperature, T_k ; initial pressure, P_0 ; relative humidity, H; initial isotopic composition of water vapour, R_0 ; cloud water mixing ratio, N_L ; temperature step, S; isotope exchange factor, K.

- hydrostatic/adiabatic rainshaft with precip removal
- condensation: saturation adjustment
- rain formation: liquid water content threshold
- parcel-model iterations towards stationary state (no explicit role of time)
- ▶ minimal model for capturing isotope exchange between precip, ambient vapor and cloud water (→ hypothesis explaining observed steep δ²H profile gradients beyond condensation-only effects)

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

^alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

alaunch-in-the-cloud URL: https://mybinder.org/v2/gh/slayoo/PySDM.git/isotopes_rozanski_and_sonntag_example?urlpath=lab/tree/examples/PySDM_examples

12/14

implemented features (incl. tests against lab and model literature data):

base SD attributes: #moles of heavy isotopologue

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- by dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

implemented features (incl. tests against lab and model literature data):

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

next steps:

non-trivial spectra simulations (presented: essentially bulk)

implemented features (incl. tests against lab and model literature data):

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

- non-trivial spectra simulations (presented: essentially bulk)
- below-cloud kinetic fractionation

implemented features (incl. tests against lab and model literature data):

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

- non-trivial spectra simulations (presented: essentially bulk)
- below-cloud kinetic fractionation
- more comprehensive simulation setups (e.g., 2D prescribed-flow)

implemented features (incl. tests against lab and model literature data):

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

- non-trivial spectra simulations (presented: essentially bulk)
- below-cloud kinetic fractionation
- more comprehensive simulation setups (e.g., 2D prescribed-flow)
- ventilation and drop heat budget

implemented features (incl. tests against lab and model literature data):

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

- non-trivial spectra simulations (presented: essentially bulk)
- below-cloud kinetic fractionation
- more comprehensive simulation setups (e.g., 2D prescribed-flow)
- ventilation and drop heat budget
- exploring dependence on droplet and precip size spectra (and hence aerosol)

implemented features (incl. tests against lab and model literature data):

- base SD attributes: #moles of heavy isotopologue
- derived SD attributed: #moles of light isotopologue, δ , ...
- equilibrium & non-equilibrium fractionation coeffs. for: ²H, ¹⁸O & ¹⁷O
- indicators: D- & ¹⁷O excess
- by dynamics: integral (Rayleigh distillation) & differential (Merlivat & Jouzel '79)
- minimal framework: iterative parcel runs towards stationary state

- non-trivial spectra simulations (presented: essentially bulk)
- below-cloud kinetic fractionation
- more comprehensive simulation setups (e.g., 2D prescribed-flow)
- ventilation and drop heat budget
- exploring dependence on droplet and precip size spectra (and hence aerosol)
- ice-phase processes

Thank you for your attention!

(sylwester.arabas@agh.edu.pl)

