Summary

1 / 10

Effective radius and droplet spectral width from RICO observations

Sylwester Arabas, Hanna Pawlowska

Institute of Geophysics, University of Warsaw, Poland

Wojciech W. Grabowski

National Center for Atmospheric Research, Boulder, Colorado, USA

July 8th 2008 15th International Conference on Clouds and Precipitation Cancún, Mexico

Motivation and scope of the research

need for parametrizations of links between microphysical and radiative properties of clouds

$$r_{eff} \sim \sqrt[3]{\frac{LWC}{N}} \cdot f(d)$$

 \rightsquigarrow assessment on the droplet spectral parameters for RICO cumuli:

• effective radius r_{eff}

- droplet concentration N
- mean radius \overline{r}
- standard deviation σ_r
- relative dispersion $d = \sigma_r / \bar{r}$

Summary

Methodology and source of data

- NSF/NCAR C-130Q flights during RICO
- Fast-FSSP optical droplet spectrometer (255-bin description of the 2 to 47 μm droplet size-range)
- 10 Hz averaged data (\sim 10 m resolution)
- in-cloud data points ($N > 10 \ cm^{-3}$)
- non-drizzling ($N_{drizzle} < 10 I^{-3}$) samples
- flight-long statistics (for research flights 06,07,09,12)

Summary

4 / 10

Frequency by altitude diagrams

example: mean radius vs. cloud height for rf09

- height above cloud base
- frequency distribution at each level
- $100 m \times 1 \mu m$ bins (rect. boxes)
- color scale: 10, 20 ... 100% of most frequent cases
- contours surround: 25, 50, 75% of most frequent cases

Methodology

Droplet concentration N

Results

- concentrations lower than 100 cm^{-3} ($N < 50 \text{ cm}^{-3}$ for rf07 & rf09)
- fairly constant with height
- variations in vertical extent of the cloud field (700 to 1200 m)

Methodology

Results

Summary

Mean droplet radius \bar{r}

- gradual increase of droplet size
- increase less pronounced in upper parts
- wide histograms (signature of entrainment and mixing)

Droplet radius standard deviation σ_r

- growth with height as for \bar{r}
- h < 200 m as in ACE-2 atlantic Sc
- large values in the upper parts → signature of entrainment/mixing

Droplet radius relative dispersion $d = \sigma_r/\bar{r}$

- relatively constant with height with values of d ~ 0.3
- h < 200 m → as in ACE-2 Sc case (higher spread of values in RICO)
- useful for parametrizing $r_{eff} \sim \sqrt[3]{LWC/N} \cdot f(d)$

Methodology

Results

Effective radius r_{eff}

- lines represent adiabatic values for constant f(d) and constant N of 50 and 100 cm⁻³ $r_{eff_{ad}} \sim \sqrt[3]{LWC_{ad}/N} \cdot f(d)$
- comparable with the pacific remote sensing observations (save for the bi-modality in deeper parts)

Results

- statistical assessment of selected microphysical parameters of pristine-air trade-wind cumuli
- in context of usage in parametrizations of microphysics-radiation links
- based on airborne in-situ measurements with the Fast-FSSP
- comparison with ground-based remote sensing retrievals

Results

- statistical assessment of selected microphysical parameters of pristine-air trade-wind cumuli
- in context of usage in parametrizations of microphysics-radiation links
- based on airborne in-situ measurements with the Fast-FSSP
- comparison with ground-based remote sensing retrievals

Thank you for your attention

