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Introduction SDM: Super-Droplet Method macrophysics: SDM vs. other LES microphysic 8 servations

Baharfus - April 18, 2000 - MODIS/MODLAND/Descloitres

MODIS image by Robert Wood: http://www.atmos.washington.edu/ robwood/images/trade_cu_modis. jpg



http://www.atmos.washington.edu/~robwood/images/trade_cu_modis.jpg

SDM: Super-Droplet Method macrophysics: SDM vs. other LES  microphysics: SDM vs. observations

trade-wind cumuli: why to study them?

e important for the Earth climate due to contrasting effects
on solar and thermal radiation:
e shortwave: significant change of albedo if clouds present
e longwave: small impact on outgoing thermal radiation (low level)

e often treated in models as non-precipitating clouds while...

Figure 1. from Rauber et al. 2007 (MWR)
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The Rain in Cumulus Over Ocean (RICO) campaign

(Loading movie...)

e 2 months of intensified observations (Dec 2004 — Jan 2005)
e 3 aircraft, 1 research vessel, 410 soundings
e ... Rauber et al. 2007 MWR
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The ,,RICO” LES set-up

van Zanten et al. 2011, (JAMES, in press):
o definition of the model benchmark case — the ,RICO” set-up
e comparison of results from 13 different LES models
e selected conclusions:

e "simulations agree on the broad structure of the cloud field ...
plausibly reproduces many features of the observed layer”

e "simulations do show considerable departures from one another
in the representation of the cloud microphysical structure”

e "simulations differ substantially in the amount of rain they produce”

e "these differences appear to be related
to microphysical assumptions made in the models”



SDM: Super-Droplet Method macrophysics: SDM vs. other LES microphysics: SDM vs. observations

RICO set-up modelled with CReSS-bulk (Kessler param.)

(Loading movie...)

(model domain translated by [—6, —4] m/s)

CReSS: Cloud Resolving Storm Simulator (Tsuboki and Sakakibara, 2006, Lect. Not. Comp. Sci.)
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¥ inside each grid box:

bulk p-physics: ¢, qr
2-moment p-physics:

Ac, Nc, g, Ny

bin py-physics: concentration density N(r)

approximated with a histogram
(i.e. defined for discrete drop radii r)
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inside each grid box:

bulk p-physics: ¢, qr

2-moment p-physics:
Ac, Nc, g, Ny

bin py-physics: concentration density N(r)
approximated with a histogram

particle-based u-physics:
~10° “"super-droplets" ofivariable radii}

at variable coordinates (x,y,z)
(i.e. not assigned to a given grid box)
each "super-droplet" representing
a number of real particles of the same

physico-chemical properties

reality: ~10"" particles of different sizes
(aerosol, cloud, drizzle, rain particles)
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SDM: Monte Carlo scheme the droplet coalescence process
e for all n super-droplets in a grid box of volume AV in timestep At
e each representing ¢ real particles (aerosol/cloud/drizzle/rain)
e the probability of coalescence of i-th and j-th super-droplets is:

Py = max(§,§) - E(r, ) - m(ri ) - [vi = vi| g - 52/ [3]

coalescence kernel

where r — drop radii, E(r;, r;) — collection efficiency, v — drop velocities
e coalescence takes place following the latter of the two (consistent) scenarios:

® a part of £ real particles (defined by Pj) coalesce every timestep
o all of min(&;,&;) droplets coalesce once in a number of timesteps (defined by Pj)
~ there's always a "bin" of the right size to store the collided particles

e collisions triggered by comparing a uniform random number with P;

e [n/2] random non-overlapping (i,j) pairs examined instead of all (i,j) pairs
cost: O(n?) ~» O(n), probability upscaled by "(" nn=1) [5]
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CReSS-SDM (8 super-droplets per grid box)

(Loading movie...)

(model domain translated by [—6, —4] m/s)
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CReSS-SDM (32 super-droplets per grid box)

(Loading movie...)

(model domain translated by [—6, —4] m/s)
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CReSS-SDM (128 super-droplets per grid box)

(Loading movie...)

(model domain translated by [—6, —4] m/s)
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Introduction SDM: Super-Droplet Method (macrophysics: SDM vs. other LES) microphysics: SDM vs. observations

CReSS-SDM (512 super-droplets per grid box)

(Loading movie...)

(model domain translated by [—6, —4] m/s)
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Introduction SDM: Super-Droplet Method (macrophysics: SDM vs. other LES) microphysics: SDM vs. observations

original RICO set-up grid: , 8 SD, , 128 SD, 512 SD
half grid size for all directions: 8 SD, 32 SD

® 13 LES models from van Zanten et al. 2011

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

cloud cover [1]

. W@W %
== I i =
2 20 21 22 23 2

time [h]
3500

3000
2500
2000
1500

1000

cloud top height [m]

500

0 1 2

time [h]
® sensitivity to vertical grid resolution (supersaturation!)

® 24h simulation vs. lack of super-droplet sources (precipitation is a sink)
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© RICO cloud microphysics: SDM vs. observations
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Introduction SDM: Super-Droplet Method macrophysics: SDM vs. other LES (microphysics: SDM vs. observations)

Fast-FSSP

(Forward Scattering Spectrometer Probe)

e measures laser light scattered
by cloud droplets

® single-particle counter

e range: 2 — 50 um in diameter

e developed by Météo-France
(Brenguier et al. 1998, JOAT)

e modified version of the FSSP-100

e key derived quantities:

e cloud droplet number conc. (CDNC)
o effective radius (rer = <*>/<?)
e radius standard deviation (o)

(FSSP under the SPEC Learjet fuselage)




(microphysics: SDM vs. observatiuns)

Fast-FSSP height-resolved statistics of CDNC, re & o, (Arabas et al. 2009, GRL)
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(microphysics: SDM vs. obscrvatiuns)

CReSS-SDM height-resolved statistics of CDNC, refr & o, (512 SD/gridbox)
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OAP-2DS (2-dimensional "stereo” optical array probe)
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(OAP-2DS under the SPEC Learjet fuselage, thanks Brad for the visit to the hangar!)
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e multiple droplets at a time, particle spectra via image analysis

27 /32



Introduction SDM: Super-Droplet Method macrophysics: SDM vs. other LES (microphysics: SDM vs. observations)

OAP-2DS (2-dimensional "stereo” optical array probe)

(OAP-2DS under the SPEC Learje fuselage, thanks Brad for the visit to the hangar!)

e registers shadows of particles on two photodiode arrays
e multiple droplets at a time, particle spectra via image analysis

e sizes cloud, drizzle and rain particles (5-3000 pm diam.)

27 /32



Introduction SDM: Super-Droplet Method macrophysics: SDM vs. other LES (microphysics: SDM vs. observations)

OAP-2DS (2-dimensional "stereo” optical array probe)

« ¥

(OAP-2DS under the SPEC Learj;c fuselage, thanks Brad for the visit to the hanga}!)

e registers shadows of particles on two photodiode arrays

e multiple droplets at a time, particle spectra via image analysis

e sizes cloud, drizzle and rain particles (5-3000 pm diam.)
developed by SPEC Inc., Boulder CO (Lawson et al. 2006, JAOT)
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OAP-2DS (2-dimensional "stereo” optical array probe)

(OAP 2DS under the gPEC Learjet fuselage, thanks Brad for the V|5|t to the hangar')
e registers shadows of particles on two photodiode arrays

e multiple droplets at a time, particle spectra via image analysis

e sizes cloud, drizzle and rain particles (5-3000 pm diam.)

e developed by SPEC Inc., Boulder CO (Lawson et al. 2006, JAOT)
e RICO was one of the first campaigns for this instrument
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Introduction

SDM: Super-Droplet Method macrophysics: SDM vs. other LES

OAP-2DS particle spectra in RICO

MARCH 2009 BAKER
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FIG. 4. The mean of 237 rain PSDs is shown on top of density
contours of the 237 individual rain PSDs observed at 600-ft (~183 m)
altitude over the ocean on 19 Jan 2005. The contours show the
number of PSDs passing through the region. Very few individual
PSDs have any counts at all between 30 and 100 um. These do not
appear on the contour plot because zero values are not included on
log-log plots.

Baker et al. 2009, J. Appl. Meteor. Clim.

(microphysics: SDM vs. observations)
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Introduction SDM: Super-Droplet Method macrophysics: SDM vs. other LES

(microphysics: SDM vs. observations)

OAP-2DS spectra vs. RICO SDM simulations

e RF17 (Jan. 19" 2005)
e 237 size distributions (line=mean)

® observed in rain shafts at 180m (600ft)
cloud base at ca. 500m (1600ft)
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SDM: Super-Droplet Method macrophysics: SDM vs. other LES

(microphysics: SDM vs. observationsj

OAP-2DS spectra vs. RICO SDM simulations
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OAP-2DS measurjement
(Baker et al. 2009, fig 4)
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Summary and outlook
Summary
e Monte-Carlo type cloud p-physics coupled with LES
e 24h simulations of a field of precipitating trade-wind cumuli
e prediction of detailed features of aerosol/cloud/drizzle/rain spectrum

e encouraging results from comparison with aircraft observations
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e Monte-Carlo type cloud p-physics coupled with LES
e 24h simulations of a field of precipitating trade-wind cumuli
e prediction of detailed features of aerosol/cloud/drizzle/rain spectrum

e encouraging results from comparison with aircraft observations

Outlook
e perturbing initial aerosol spectrum ~- impact on precip/albedo

e tracing back above-cloud base CCN activation

e turbulent coalescence kernel; aerosol processing
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CALTECH

Some changes are more difficult to describe than the motion of a
point on a solid object, for example the speed of drift of a cloud
that is drifting very slowly, but rapidly forming or evaporating,

or the change of woman’s mind.

We do not know a simple way to analyse a change of mind, but since
the cloud can be represented or described by many molecules, perhaps
we can describe the motion of the cloud in principle by describing the
motion of all its individual molecules.

The Feynman Lectures on Physics, 1964
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Thank you for your attention!



RICO set-up (van Zanten et al. 2011, JAMES)

http://www.knmi.nl/samenw/rico/
duration: 24h (analyses mostly over the last 4h)
domain size: 12.8 x 12.8 x 4.0 km; 128 x 128 x 100 grid points

boundary conditions:

e |ateral: periodic
e top: sponge layer 200 m above the mean inversion height
® bottom: surfaces fluxes parameterised

initial condition: u, v, q:, & 6, profiles based on observations/reanalysis
initial random g, and 6 perturbations

surface: constant SST of 299.8 K, prescribed drag coefficients

large-scale forcings (subsidence & large-scale advection)

other: domain translation by mean wind (SDM less sensitive than Kessler)

CReSS/SDM options:
e coalescence kernel: Hall
e subgrid-scale model: Smagorinsky
e advection scheme: semi-Lagrangian / Cubic Lagrange interpolation
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http://www.knmi.nl/samenw/rico/

wall time times no. of nodes

CReSS: bulk vs. SDM computational cost
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Kessler SDM-8 SDM-32 SDM-128 SDM-512
B
original half horizontal half all quarter all

grid type (domain size unaltered)
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CCN activation spectrum for the RICO set-up

predictions for lognormal fits to RICO aerosol aircraft observations
(using adaptive moving-sectional air-parcel model, Arabas & Pawlowska 2011, GMD)
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