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rationale behind icicle

∂tψi +∇ · (~vψi) = Ri
• systems of advective transport (continuity) equations pop up

frequently in geosciences  need for accurate & efficient solvers

• MPDATA (Smolarkiewicz 1983, . . . ) is:
• second-order accurate in space and time
• multidimensional and sign-preserving by design
• optionally non-oscillatory (flux-corrected transport)
• iterative  readily parallelisable
• traditionally the solver-of-choice at the University of Warsaw :)

• there’s no implementation of an MPDATA-based solver that:
• is free (as in free speech) and open-source
• has technical documentation (re-usability)
• uses object-oriented programming (OOP)
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1D donor-cell in C++/Blitz++

template <class pi>
inline auto donorcell_1D(
const arr_t &psi,
const arr_t &C,
const rng_t &i, const rng_t &j
) return_macro(
F(psi(pi(i, j)), psi(pi(i+1,j)), C(pi(i+h,j))) -
F(psi(pi(i-1,j)), psi(pi(i, j)), C(pi(i-h,j)))
)

2D donor-cell in C++/Blitz++

inline void donorcell_2D(
const vec_t<arr_t> &psi, const int n,
const vec_t<arr_t> &C,
const rng_t &i, const rng_t &j
) {
psi[n+1](i,j) = psi[n](i,j)
- donorcell_1D<pi_ij>(psi[n], C[0], i, j)
- donorcell_1D<pi_ji>(psi[n], C[1], j, i);

}

Arakawa-C grid with operator overloading

struct hlf_t {} h;

inline rng_t operator+(
const rng_t &i, const hlf_t &
) {
return i + 1;
}

inline rng_t operator-(
const rng_t &i, const hlf_t &
) {
return i;
}

 Blitz++
http://sf.net/projects/blitz/
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C++ vs. FORTRAN vs. Python: performance

[
]

donor-cell times from Jarecka et al. 2012 EGU poster
MPDATA paper in preparation



C++ can check units for you (at no runtime cost!)

κ-Köhler parameterisation

/// @brief activity of water in solution
/// (eqs. 1,6) in @copydetails Petters_and_Kreidenweis_2007
template <typename real_t>
quantity<si::dimensionless, real_t> a_w(
quantity<si::volume, real_t> rw3,
quantity<si::volume, real_t> rd3,
quantity<si::dimensionless, real_t> kappa
)
{
return (rw3 - rd3) / (rw3 - rd3 * (real_t(1) - kappa));
}
};

 Boost.units
http://boost.org/doc/libs/release/libs/units/
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OOP may help to make the code:

• human-readable + open-source  auditable (code review!)

• shorter  less bug-prone, easier to debug

• reusable  coding time savings in the long run

• shareable  common libraries instead of copy-paste!

• maintainable  less bug-prone, easier to co-operate on

• modular  full separation of numerics/physics/concurrency/io

• optimisable (by the compiler/library author)  potentially faster

the aims of icicle

”[Object oriented programming] has become recognised
as the almost unique successful paradigm
for creating complex software”

NR: The Art of Scientific Computing
(3rd ed., Press et al. 2007)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server
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• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

1D scalar advection examples
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

1D shallow water example



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D isentropic example



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (bulk)

water vapour mixing ratio [g/kg]

t = 1000 s

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

X [km]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Y
 [
k
m

]

 6

 6.5

 7

 7.5

 8

potential temperature [K]

t = 1000 s

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

X [km]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Y
 [
k
m

]

 288

 289

 290

 291

 292

 293

liquid water mixing ratio [g/kg]

t = 1000 s

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

X [km]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Y
 [
k
m

]

 0

 0.2

 0.4

 0.6

 0.8

 1

rain water mixing ratio [g/kg]

t = 1000 s

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

X [km]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Y
 [
k
m

]

 0

 0.01

 0.02



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server



icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)

water vapour mixing ratio [g/kg]
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)

water vapour mixing ratio [g/kg]
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server

2D moist kinematic example (super-droplets)
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icicle: currently available components
• advection scheme:

• MPDATA
• any number of iterations
• 3rd order accuracy option
• FCT (aka non-oscillatory) option
• variable-sign field option

• donor-cell, leapfrog, ...
• equation sets:

• scalar advection (rhs=0  tests)
• 1D/2D shallow water
• 2D/3D isentropic
• 2D moist kinematic (this workshop’s ”case 1”)

• bulk (Kessler) µ-physics
• particle-based (super-droplet) µ-physics

• input/output: ASCII, netCDF-4
• parallelisation: OpenMP, Boost.Threads, Boost.MPI

all selectable at runtime via command-line options
 command-line string unambiguously defines simulation (in output file)

 easy to call from Python, Octave, GDL, . . . or a web server
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Merali 2010 (Nature, vol. 467, p. 775-777)

B Y  Z E E Y A  M E R A L I

http://www.nature.com/news/2010/101013/full/467775a.html



return macro() definition (preprocessor)

# define return_macro(expr) \
-> decltype(safeToReturn(expr)) \
{ return safeToReturn(expr); }


