Aerosol processing by drizzling stratocumulus: a modelling study using a novel particle-based approach

> Sylwester Arabas Anna Jaruga Hanna Pawłowska

> University of Warsaw Faculty of Physics Institute of Geophysics

8th International Conference on Cloud and Precipitation Leipzig, August 1st 2012

• interactions: aerosol — > cloud & precipitation — > aerosol

• SCON spectrum responses on the second low evaporation of • SCON spectrum responses on the second line • accequate cloud //- physics representations?

• interactions: aerosol —⊳ cloud & precipitation —⊳ aerosol

• interactions: aerosol —⊳ cloud & precipitation —⊳ aerosol

processed CCN formed by evaporation of

- collisionally-grown drops
- drops within which irreversible oxidation occurred

• interactions: aerosol —⊳ cloud & precipitation —⊳ aerosol

- processed CCN formed by evaporation of
 - collisionally-grown drops
 - drops within which irreversible oxidation occurred
- CCN spectrum modification by wet deposition

• interactions: aerosol —⊳ cloud & precipitation —⊳ aerosol

- processed CCN formed by evaporation of
 - collisionally-grown drops
 - drops within which irreversible oxidation occurred
- CCN spectrum modification by wet deposition
- adequate cloud µ-physics representations?

aerosol processing: adequate μ -physics?

aerosol processing: adequate μ -physics?

aerosol processing: adequate μ -physics?

key features of the Lagrangian (in size) approach:

- diffusive error-free particle growth schemes (aka "moving sectional")
- scales better than ND-bin with growing number of particle attributes

key features of the Lagrangian (in size) approach:

- diffusive error-free particle growth schemes (aka "moving sectional")
- scales better than ND-bin with growing number of particle attributes

coupled with Lagrangian-in-space \rightsquigarrow super-droplet approach.

each particle (aka super-droplet) → many "similar" real-world particles

- each particle (aka super-droplet) \rightsquigarrow many "similar" real-world particles
- attributes: multiplicity, dry radius, wet radius, nucleus type, ...

- each particle (aka super-droplet) \rightsquigarrow many "similar" real-world particles
- attributes: multiplicity, dry radius, wet radius, nucleus type, ...
- aerosol, cloud, precip. particles not distinguished, subject to same processes

- each particle (aka super-droplet) \rightsquigarrow many "similar" real-world particles
- attributes: multiplicity, dry radius, wet radius, nucleus type, ...
- aerosol, cloud, precip. particles not distinguished, subject to same processes

Eulerian / PDE advection of heat advection of moisture Lagrangian / ODE particle transport by the flow condensational growth collisional growth sedimentation

- each particle (aka super-droplet) \rightsquigarrow many "similar" real-world particles
- attributes: multiplicity, dry radius, wet radius, nucleus type, ...
- aerosol, cloud, precip. particles not distinguished, subject to same processes

Eulerian / PDE advection of heat advection of moisture

 $\partial_t(\rho_d r) + \nabla(\vec{v}\rho_d r) = \rho_d \dot{r}$ $\partial_t(\rho_d \theta) + \nabla(\vec{v}\rho_d \theta) = \rho_d \dot{\theta}$

Lagrangian / ODE particle transport by the flow condensational growth collisional growth sedimentation

 $\dot{r} = \sum_{\substack{\text{particles} \in \Delta V \\ \dot{\theta} = \sum_{\substack{\text{particles} \in \Delta V \\ \text{particles} \in \Delta V}} \dots$

- each particle (aka super-droplet) \rightsquigarrow many "similar" real-world particles
- attributes: multiplicity, dry radius, wet radius, nucleus type, ...
- aerosol, cloud, precip. particles not distinguished, subject to same processes

Eulerian / PDE advection of heat advection of moisture

 $\partial_t (\rho_d r) + \nabla(\vec{v} \rho_d r) = \rho_d \dot{r}$ $\partial_t (\rho_d \theta) + \nabla(\vec{v} \rho_d \theta) = \rho_d \dot{\theta}$

advection of trace gases

Lagrangian / ODE particle transport by the flow condensational growth collisional growth sedimentation

 $\dot{r} = \sum_{\substack{\text{particles} \in \Delta V \\ \dot{\theta} = \sum_{\substack{\text{particles} \in \Delta V \\ \text{particles} \in \Delta V}} \dots$

in-particle aqueous chemistry

- each particle (aka super-droplet) \rightsquigarrow many "similar" real-world particles
- attributes: multiplicity, dry radius, wet radius, nucleus type, ...
- aerosol, cloud, precip. particles not distinguished, subject to same processes

Eulerian / PDE advection of heat advection of moisture

 $\partial_t (\rho_d r) + \nabla(\vec{v} \rho_d r) = \rho_d \dot{r}$ $\partial_t (\rho_d \theta) + \nabla(\vec{v} \rho_d \theta) = \rho_d \dot{\theta}$

advection of trace gases

Lagrangian / ODE particle transport by the flow condensational growth collisional growth sedimentation

 $\dot{r} = \sum_{\substack{\text{particles} \in \Delta V \\ \dot{\theta} = \sum_{\substack{\text{particles} \in \Delta V \\ \text{particles} \in \Delta V}} \dots$

in-particle aqueous chemistry

recent examples in context of precipitating clouds:

- Shima et al. 2009, QJ
- Andrejczuk et al. 2010, JGR
- Riechelmann et al. 2012, NJP

Int. Cloud Modelling Workshop 2012 "drizzling Sc case" (Wojciech Grabowski & Zach Lebo)

Int. Cloud Modelling Workshop 2012 "drizzling Sc case" (Wojciech Grabowski & Zach Lebo)

- VOCALS-inspired
- 2D prescribed-flow (single eddy)
- bi-modal initial dry aerosol spectrum
- details:

http://rap.ucar.edu/~gthompsn/workshop2012/case1/

Int. Cloud Modelling Workshop 2012 "drizzling Sc case" (Wojciech Grabowski & Zach Lebo)

- VOCALS-inspired
- 2D prescribed-flow (single eddy)
- bi-modal initial dry aerosol spectrum
- details:

http://rap.ucar.edu/~gthompsn/workshop2012/case1/

icicle igf. fuw.edu.pl/

• icicle – a new open-source advection eq. systems solver

•

• Eulerian advection: MPDATA (Smolarkiewicz 1983, ...)

• icicle's Lagrangian μ -physics module:

ICICIE http://icicle.igf.fuw.edu.pl/

- icicle a new open-source advection eq. systems solver
 - Eulerian advection: MPDATA (Smolarkiewicz 1983, ...)

icicle's Lagrangian μ-physics module:

•

- coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)
- aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)
- gravitational sedimentation: Khvorostyanov & Curry, 2002
- implementation: C++ / Thrust (GPU-ready!)

ttp://icicle.igf.fuw.edu.pl/

- icicle a new open-source advection eq. systems solver
 - Eulerian advection: MPDATA (Smolarkiewicz 1983, ...)

icicle's Lagrangian μ-physics module:

•

- coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)
- aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)
- gravitational sedimentation: Khvorostyanov & Curry, 2002
- implementation: C++ / Thrust (GPU-ready!)

• for all *n* super-droplets in a grid box of volume ΔV in timestep Δt

 $P_{ij} = max(\xi_i, \xi_j) \cdot \underbrace{\mathbb{E}(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot (x_i - x_j)}_{\text{collective kinal}} \cdot \frac{\alpha \cdot (\alpha - 1)}{2} / \begin{bmatrix} r_2 \\ r_2 \end{bmatrix}$ where $r_1 = r_2 + r_$

for all *n* super-droplets in a grid box of volume ΔV in timestep Δt
each representing ξ real particles (aerosol/cloud/drizzle/rain)

all min (ξ_i,ξ_i) droplets coalesce

- for all *n* super-droplets in a grid box of volume ΔV in timestep Δt
- each representing ξ real particles (aerosol/cloud/drizzle/rain)
- the probability of coalescence of i-th and j-th super-droplets is:

 $P_{ij} = max(\xi_i, \xi_j) \cdot E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j| \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \left[\frac{n}{2}\right]$

coalescence kernel

where r - drop radii, $E(r_i, r_j) - collection efficiency, <math>v - drop$ velocities coalescence takes place once in a number of timesteps (def. by P_{ij}) all min (ξ_i, ξ_i) droplets coalesce

- for all *n* super-droplets in a grid box of volume ΔV in timestep Δt
- each representing ξ real particles (aerosol/cloud/drizzle/rain)
- the probability of coalescence of i-th and j-th super-droplets is:

 $P_{ij} = \max(\xi_i, \xi_j) \cdot \underbrace{\mathcal{E}(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j|}_{\text{coalescence kernel}} \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \left[\frac{n}{2}\right]$

where r - drop radii, $E(r_i, r_i) - collection$ efficiency, v - drop velocities

- coalescence takes place once in a number of timesteps (def. by P_{ij})
- all min(ξ_i,ξ_j) droplets coalesce
 → there's always a "bin" of the right size to store the collided particles

- for all *n* super-droplets in a grid box of volume ΔV in timestep Δt
- each representing ξ real particles (aerosol/cloud/drizzle/rain)
- the probability of coalescence of i-th and j-th super-droplets is:

 $P_{ij} = \max(\xi_i, \xi_j) \cdot \underbrace{E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j|}_{\text{coalescence kernel}} \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \left[\frac{n}{2}\right]$

where r - drop radii, $E(r_i, r_j) - collection$ efficiency, v - drop velocities

- coalescence takes place once in a number of timesteps (def. by P_{ij})
- all min(ξ_i,ξ_j) droplets coalesce
 → there's always a "bin" of the right size to store the collided particles
- collisions triggered by comparing a uniform random number with Prij

- for all *n* super-droplets in a grid box of volume ΔV in timestep Δt
- each representing ξ real particles (aerosol/cloud/drizzle/rain)
- the probability of coalescence of i-th and j-th super-droplets is:

 $P_{ij} = max(\xi_i, \xi_j) \cdot \underbrace{E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j|}_{\text{coalescence kernel}} \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \left[\frac{n}{2}\right]$

where r - drop radii, $E(r_i, r_i) - collection$ efficiency, v - drop velocities

- coalescence takes place once in a number of timesteps (def. by P_{ij})
- all min (ξ_i, ξ_j) droplets coalesce
 - \rightsquigarrow there's always a "bin" of the right size to store the collided particles
 - collisions triggered by comparing a uniform random number with P_{ij}
 - extensive parameters summed (→ conserved), intensive averaged

- for all *n* super-droplets in a grid box of volume ΔV in timestep Δt
- each representing ξ real particles (aerosol/cloud/drizzle/rain)
- the probability of coalescence of i-th and j-th super-droplets is:

 $P_{ij} = max(\xi_i, \xi_j) \cdot \underbrace{E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j|}_{\text{coalescence kernel}} \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \begin{bmatrix} n \\ 2 \end{bmatrix}$

where r – drop radii, $E(r_i, r_j)$ – collection efficiency, v – drop velocities

- coalescence takes place once in a number of timesteps (def. by P_{ij})
- all min (ξ_i,ξ_i) droplets coalesce
 - \rightsquigarrow there's always a "bin" of the right size to store the collided particles
- collisions triggered by comparing a uniform random number with P_{ij}
- extensive parameters summed (~> conserved), intensive averaged

 [n/2] random non-overlapping (i,j) pairs examined instead of all (i,j) pairs cost: O(n²) → O(n), probability upscaled by ⁿ(n-1)/[n/2]

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

1.5

3D LES with super-droplets (Arabas & Shima 2012)

- 24h LES using the "RICO" set-up (van Zanten et al. 2011)
- Nagoya Univ. CReSS model (Tsuboki 2008)
- comparison with aircraft measurements (OAP-2DS, Fast-FSSP)

More:

- ICCP poster no. P.8.16
- arXiv:1205.3313

Thanks for your attention!

Acknowledgements:

Shin-ichiro Shima (Hyogo Univ.) Piotr Smolarkiewicz & Wojciech Grabowski (NCAR)

Implementation of the super-droplet μ -physics in icicle is supported by Polish National Science Centre grant no. DEC-2011/01/N/ST10/01483

Thanks are due authors of open-source software used in icicle, incl.: Blitz++, Thrust, Boost.units, gnuplot-iostream, ... 🛒

Super-Droplet concentration → number of "bins" (exchanged among "parcels") → number of "parcels" (each carrying a single "bin")

"multiple collisions" needed for low SD conc. (cf. Shima et al. 2009)" not implemented yet in icicle!

- kinematic (prescribed-flow)
 → perhaps still enough? (focus on μ-physics)
- decoupled from cloud dynamics
 ~ computationally cheap

- kinematic (prescribed-flow)
 → perhaps still enough? (focus on μ-physics)
- decoupled from cloud dynamics
 → computationally cheap