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Trade-wind cumuli: why to study them?
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Figure 1. from Rauber et al. 2007 (MWR)
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scales better than ND-bin with number of particle attributes



Cloud p-physics: options for LES

2D-bin single-moment bulk:

Eulerian

multi-moment bulk,
1D-bin:

ry radius" (nucleus)

0sol m infl ence oud
no "memory" of drop nuclei
features of the Lagrangian (in size) approach:

diffusive error-free particle growth schemes
(condensational " moving sectional”, collisional: Monte-Carlo)

scales better than ND-bin with number of particle attributes



Cloud p-physics: options for LES

2D-bin single-moment bulk:

Eulerian

Lagrangian
multi-moment bulk,
1D-bin:

=
(%]
=
9
s}
S
=
€
)
=
=1
e

no "memory" of drop nuclei

features of the Lagrangian (in size) approach:

diffusive error-free particle growth schemes
(condensational " moving sectional”, collisional: Monte-Carlo)

scales better than ND-bin with number of particle attributes
fewer parameterisation in comparison with bulk or bin models oy,

*, *,
& %
*
* 5
x

sk

coupled with Lagrangian-in-space ~~ particle tracking

AV
o

a5



Cloud p-physics: options for LES

2D-bin single-moment bulk:

Eulerian

Lagrangian
multi-moment bulk,

1D-bin:

=
(%]
=
9
s}
S
=
s
)
=
=1
e

no "memory" of drop nuclei

features of the Lagrangian (in size) approach:

diffusive error-free particle growth schemes
(condensational " moving sectional”, collisional: Monte-Carlo)

scales better than ND-bin with number of particle attributes
fewer parameterisation in comparison with bulk or bin models s,

*, *,
& %

*
* 5

coupled with Lagrangian-in-space ~~ particle tracking

AV
o

a5



Cloud p-physics: options for LES

2D-bin single-moment bulk:

Eulerian

Lagrangian

—
w0
>

9
]
>
c

A=)

.

=

S
®

multi-moment bulk,

no "memory" of drop nuclei

features of the Lagrangian (in size) approach:

diffusive error-free particle growth schemes
(condensational " moving sectional”, collisional: Monte-Carlo)

scales better than ND-bin with number of particle attributes



Lagrangian p-physics: key elements
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Monte-Carlo coalescence scheme (Shima et al. 2009)
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coalescence kernel

coalescence takes place once in a number of timesteps (def. by Pj;)

all min(&;,&;) droplets coalesce
~~ there's always a "bin" of the right size to store the collided particles

collisions triggered by comparing a uniform random number with Pj;

extensive parameters summed (~> conserved), intensive averaged

[n/2] random non-overlapping (i,j) pairs examined only
cost: O(n?) ~ O(n), probability upscaled by L{U/ 5]
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Particle-based LES vs. other LES (van Zanten et al. 2011)

less sensitive to super-droplet density than to grid resolution




Particle-based LES vs. other LES (Matheou et al. 2011)
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RICO Fast-FSSP statistics (Arabas et al. 2009, GRL)
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Super-Droplet LES: Fast-FSSP-mimicking analysis
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last 4h of the LES vs. flight-long statistics NI,
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"typical conditions” vs. different flights/days %,; A

LES sensitivity to grid resolution & super-droplet density Wogy
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Super-Droplet LES: supersaturation vs. height
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lowest quartile subsaturated
maximum near cloud base (median profile) ~~ CCN activation kinetics

condensational growth integrated implicitly ~» At ~0.2 s

values: lack of measurements to compare to?
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Super-Droplet LES vs. RICO Fast-FSSP measurements
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Super-Droplet LES vs. RICO Fast-FSSP measurements
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Super-Droplet LES vs. RICO Fast-FSSP measurements
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reasons for the reduced slope in the upper part of the cloud field:
the Fast-FSSP 1-24 um drop radius range

decreased efficiency, in terms of radius change, of condensational growth
increased probability of drop collisions and coalescence
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Super-Droplet LES vs. RICO Fast-FSSP measurements
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reasons for the reduced slope in the upper part of the cloud field:
the Fast-FSSP 1-24 um drop radius range

decreased efficiency, in terms of radius change, of condensational growth
increased probability of drop collisions and coalescence
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Focus of the analysis: mimicking particle-counting probes

o' LIOUE - - sizes multiple
partlcles particles at a time
- sizes cloud in the 5-3000 pm
droplets in diameter range
the 2-50 ym
diameter range

Fast-FSSP / Meteo-France, Toulouse OAP-2DS / SPEC Inc. Boulder CO
Brenguier et al. 1997, JAOT Lawson et al. 2006, JAOT




OAP-2DS-mimicking analysis vs. RICO OAP-2DS statistics
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FIG. 4. The mean of 237 rain PSDs is shown on top of density
contours of the 237 individual rain PSDs observed at 600-ft (~183 m)
altitude over the ocean on 19 Jan 2005. The contours show the
number of PSDs passing through the region. Very few individual
PSDs have any counts at all between 30 and 100 um. These do not
appear on the contour plot because zero values are not included on
log-log plots.
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OAP-2DS-mimicking analysis vs. RICO OAP-2DS statistics
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Summary

assigned to a super-droplet (e.g. chemical properties)

(arguably) reasonable agreement with in-situ measurements
~> set-up includes the key players in aerosol-cloud-precip interactions

fewer parameterisation in comparison with bulk or bin models
(e.g. Kohler curve and aerosol size spectrum instead of
activation parameterisations or autoconversion thresholds)



ongoing work: super-droplets & aerosol processing
| 4

processed CCN formed by evaporation of

collisionally-grown drops
drops within which irreversible oxidation occurred

CCN spectrum modification by wet deposition

simulations using a 2D kinematic framework with
Wojciech Grabowski & Zach Lebo @ NCAR and
Anna Jaruga @ Univ. Warsaw (visiting NCAR in January)
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Thanks for your attention!

Kanya Kusano (JAMSTEC & Nagoya University)

Kozo Nakamura (JAMSTEC)

Computer time on the Earth Simulator 2 provided by JAMSTEC

Visit to NCAR funded by the Foundation for Polish Science
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