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no particles ~ no clouds
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Stevens and Feingold, 2009 (Nature)
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Stevens and Feingold, 2009 (Nature)

Albedo effect Lifetime effect

Larger drops More rain
Less cloud
Less cloud-active
aerosol

t=10 min t =20 min t =30 min t =40 min t =50 min t =60 min

Stevens and Boucher, 2012 (Nature)

“there is something captivating about the idea that fine particulate
matter, suspended almost invisibly in the atmosphere, holds the key to
some of the greatest mysteries of climate science” 6/22
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Prigogine and Stengers 1984

“Much of this book has centered around the relation between the microscopic and the
macroscopic. One of the most important problems in evolutionary theory is the
eventual feedback between macroscopic structures and microscopic events:
macroscopic structures emerging from microscopic events would in turn lead to a
modification of the microscopic mechanisms.”




regime-transition (bifurcation) example from P&S 1984

ORDER OUT OF CHAOS 188

(a) (b)

Figure 19. Nucleation of a liquid droplet in a supersaturated vapor. (a)
droplet smaller than the critical size; (b) droplet larger than the critical size.
The existence of the threshold has been experimentally verified for dissipa-
tive structures.
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droplet growth laws in a nutshell: Kohler curve
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droplet growth laws in a nutshell: Kohler curve
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droplet growth laws in a nutshell: Kohler curve
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phase portrait of the system: flipped Kohler curve
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phase portrait of the system: flipped Kohler curve
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phase portrait of the system: flipped Kohler curve
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saddle-node bifurcation at Kohler curve maximum
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saddle-node bifurcation at Kohler curve maximum
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saddle-node bifurcation at Kohler curve maximum

e
0.15 T S s
LA =217 1" —
‘ CO‘* CZEcZ ......
_ 2 ; 1
RHeq(gc) - C0+g’£€+c2£c+' e 01 b —— = N
= ; ; Co=RH.
| |RH-RH
3
= : 3 ;
005 feof e =
T oS :
4
0
-0.05 ! - !
0 @ pm)2 2x(1 um)2 3x(1 um)2
2
12/22



saddle-node bifurcation at Kohler curve maximum
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activation timescale: analytic vs. numerical

Arabas & Shima 2017
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activation timescale: analytic vs. numerical

Arabas & Shima 2017 Hoffmann, 2016 (MWR)
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The second time scale is associated with the activation
of particles, for which Kohler theory is essential. This
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RH-coupled system & particle concentration as parameter
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bifurcations (and catastrophe) in the RH-coupled system
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Figure 15. This figure shows how a “hysteresis” phenomenon occurs if we
have the value of the bifurcation parameter b firstgrowing and then diminish-
ing. If the system is initially in a stationary state belonging to the lower
branch, it will stay there while b grows. But at b=b,, there wil be a discon-
tinuity: The system jumps from Q to @, on the higher branch. Inversely,
starting from a state on the higher branch, the system will remain there till
b=b,, when it will jump down to . Such types of bistable behavior are
observed in many fields, such as lasers, chemical reactions or biological
membranes.
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Pngogme & Stengers 1984 Strogatz 2014
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bifurcations (and catastrophe) i RH-coupled system

Prigogine & Stengers 1984 Strogatz 2014
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~> "jumps”, hysteretic behaviour (ry, RH) for small enough N,
close to equilibrium (slow process)
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= w — 0 (and hence pg ~ 0) i.e., slow, close-to-equilibrium evolution of the
system relevant to fixed-point analysis (by some means pertinent
to formation of non-convective clouds such as fog)

= N — 0 (and hence ¢ ~ 0) i.e., weak coupling between particle size
evolution and ambient thermodynamics (pertinent to the case
of low particle concentration).
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parcel model: numerical integration (sinusoidal w)
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parcel model: numerical integration (sinusoidal w)
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hysteresis: activation/deactivation cycle

‘

= nomenclature:

-

RO

CCN activation
(heterogeneous) nucleation

CCN deactivation

aerosol regeneration / resuspension / recycling

drop-to-particle conversion
droplet evaporation

= significance:
i aerosol processing by clouds (aqueous chemistry, coalescence)
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applicability beyond cloud physics (hypothesis...)

Wilson & bubble chambers

https://home.cern/about/updates/2015/06/seeing-invisible-event-displays-particle-physics
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conclusions, takeaways, prospects

= aerosol-cloud interactions:
— formation of droplets on aerosol,
— cloud processing of aerosol,
— wet deposition

== CCN (de)activation as a bifurcating dynamical system:
— analytical results: conditions for hysteretic behaviour, timescales
— guidance for numerical scheme design (particle-based p-physics)

= applicability beyond cloud physics:
- e.g., charge-induced activation (~» Wilson chamber),
— modelling operation of air-pollution monitoring instruments

extensions:

— bi-/poly- modal/disperse spectra (spectrum width!),

— activated/unactivated partitioning (excitable behaviour!),

— beyond Kohler curve (charge, surfactants, non-soluble aerosol, ...)
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Thank you for your attention!

https://doi.org/10.5194/npg-24-535-2017
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