Particle-based cloud microphysics: rationale, state of the art and challenges

Sylwester Arabas

alma mater: University of Warsaw (group of Hanna Pawłowska)

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - MSc (2008) in observational cloud μ -physics (EUCAARI)

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - MSc (2008) in observational cloud μ -physics (EUCAARI)
 - ▶ PhD (2013) in computational cloud μ -physics

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - MSc (2008) in observational cloud μ -physics (EUCAARI)
 - ▶ PhD (2013) in computational cloud μ -physics
 - postdoc (till 2015): research software development

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - MSc (2008) in observational cloud μ -physics (EUCAARI)
 - ▶ PhD (2013) in computational cloud μ -physics
 - postdoc (till 2015): research software development
- outside of academia:

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - ▶ MSc (2008) in observational cloud μ -physics (EUCAARI)
 - ▶ PhD (2013) in computational cloud μ -physics
 - postdoc (till 2015): research software development
- outside of academia:
 - 2015–2017: Chatham Financial, Cracow (software developer)

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - ▶ MSc (2008) in observational cloud μ -physics (EUCAARI)
 - ▶ PhD (2013) in computational cloud μ -physics
 - postdoc (till 2015): research software development
- outside of academia:
 - 2015–2017: Chatham Financial, Cracow (software developer)
 - 2017–2018: AETHON, Athens (H2020 "Innovation Associate")

- alma mater: University of Warsaw (group of Hanna Pawłowska)
 - MSc (2008) in observational cloud μ -physics (EUCAARI)
 - ▶ PhD (2013) in computational cloud μ -physics
 - postdoc (till 2015): research software development
- outside of academia:
 - 2015–2017: Chatham Financial, Cracow (software developer)
 - 2017–2018: AETHON, Athens (H2020 "Innovation Associate")
- back to academia:
 - 2018-...: Jagiellonian University, Cracow (Math/CS Dept.)

intro: plan of the talk

particle-based cloud microphysics:

intro: plan of the talk

particle-based cloud microphysics:

rationale

particle-based cloud microphysics:

- rationale
- state of the art

particle-based cloud microphysics:

- rationale
- state of the art

rationale

background image: vitsly.ru / Hokusai

background image: vitsly.ru / Hokusai

· aerosol particles of natural and anthropogenic origin act as condensation nuclei

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- · cloud droplets grow by water vapour condensation

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets
- aqueous chemical reactions irreversibly modify the drop composition

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets
- aqueous chemical reactions irreversibly modify the drop composition
- rain drops precipitate washing out aerosol

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets
- aqueous chemical reactions irreversibly modify the drop composition
- rain drops precipitate washing out aerosol
- · rain drops evaporate into aerosol particles of potentially altered size and/or composition (collisions, chemistry)

background image: vitsly.ru / Hokusai

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- · cloud droplets grow by water vapour condensation
- · rain drops form through collisions of cloud droplets
- · aqueous chemical reactions irreversibly modify the drop composition
- · rain drops precipitate washing out aerosol
- · rain drops evaporate into aerosol particles of potentially altered size and/or composition (collisions, chemistry)

two-way interactions:

- aerosol characteristics influence cloud microstructure
- cloud processes influence aerosol size and composition

background image: vitslv.ru / Hokusai

▶ single-moment bulk

single-moment bulk

multi-moment bulk

single-moment bulk

multi-moment bulk

,,wet" size spectrum (bin)

single-moment bulk

multi-moment bulk

"wet" size spectrum (bin)

"wet vs. dry" 2D spectrum

Lagrangian:

parcel model

→ moving-sectional schemes (40-ties onwards: Howell, Mordy, . . .)

Lagrangian:

- parcel model
 - → moving-sectional schemes (40-ties onwards: Howell, Mordy, ...)
- LES + Lagrangian-in-space + coalescence
 - ightharpoonup particle-based/super-droplet μ -physics (00-ties onwards: Shima, . . .)

rationale: modelling aerosol-cloud interactions

Pioneering warm-rain LES aerosol-cloud-interaction models:

Andrejczuk et al. 2010

condensation: Lagrangian collisions: Eulerian

Lebo & Seinfeld 2011

condensation: Eulerian collisions: Eulerian

Shima et al. 2009

condensation: Lagrangian collisions: Lagrangian

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets) carrier attributes:

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

location

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- location
- wet radius

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- location
- wet radius
- dry radius

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- location
- wet radius
- dry radius
- multiplicity

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- location
- wet radius
- dry radius
- multiplicity
- 2 ...

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

- location
- wet radius
- dry radius
- multiplicity
- 2 ...

advantage over Eulerian approach: adding attributes does not increase dimensionality

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

- location
- wet radius
- dry radius
- multiplicity
- **2** . . .

advantage over Eulerian approach: adding attributes does not increase dimensionality (ice, chemistry, charge, isotopic composition, ...)

Lagrangian / ODE

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	

Eulerian / PDE	${\sf Lagrangian} \ / \ {\sf ODE}$
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation

Eulerian / PDE	$Lagrangian \; / \; ODE$
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation
$\partial_t(ho_d r) + abla \cdot (ec{v} ho_d r) = ho_d \dot{r}$	$\dot{r} = \sum_{i=1}^{n} \sum_{j=1}^{n} \dots$
$\partial_{x}(x,0) + \nabla_{x}(\vec{x}_{x},0) = \dot{0}$	$egin{aligned} particles \in \Delta V \ \dot{ heta} = & \sum & \dots \end{aligned}$
$\partial_t(\rho_d\theta) + \nabla \cdot (\vec{v}\rho_d\theta) = \rho_d\dot{\theta}$	$m{ heta} = \sum_{\substack{\dots \ \text{particles}}} \dots$
	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation
$\partial_t(\rho_d r) + \nabla \cdot (\vec{v}\rho_d r) = \rho_d \dot{r}$	$\dot{r} = \sum\limits_{particles \ \in \ \Delta V} \ldots$
$\partial_t (\rho_d \theta) + \nabla \cdot (\vec{v} \rho_d \theta) = \rho_d \dot{\theta}$	$\dot{ heta} = \sum_{particles \ \in \ \Delta V} \dots$
advection of trace gases	in-particle aqueous chemistry

x [km]

6.

14

0.

z [km] 0,9

6.

x [km]

16 14

cloud droplet effective radius [µm]

x [km]

2

z [km] 0,9

6.

0.0

x [km]

6.

120

60

x [km]

6.

14

0.

z [km] 0,9

6.

x [km]

120

x [km]

6.

10

0.0

120 100

cloud droplet effective radius [µm]

x [km]

2

z [km] 0,9

6.

rain water mixing ratio [g/kg]

0.

cloud droplet effective radius [µm]

x [km]

2

z [km] 0,9

6.

0.

0.1

x [km]

z [km] 0,9

6.

x [km]

6.

6.

x [km]

x [km]

6.

x [km]

6.

0

state of the art

recent research software (re)developments:

INC/LCM from LANL/Leeds,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,
- UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,
- UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,
- Pencil-Code (http://pencil-code.nordita.org) from Nordita/UC,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,
- UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,
- Pencil-Code (http://pencil-code.nordita.org) from Nordita/UC,
- SCALE (http://scale.aics.riken.jp/) from RIKEN,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,
- UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,
- Pencil-Code (http://pencil-code.nordita.org) from Nordita/UC,
- SCALE (http://scale.aics.riken.jp/) from RIKEN,
- UWLCM (http://github.com/igfuw/UWLCM) from Univ. Warsaw,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,
- UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,
- Pencil-Code (http://pencil-code.nordita.org) from Nordita/UC,
- SCALE (http://scale.aics.riken.jp/) from RIKEN,
- UWLCM (http://github.com/igfuw/UWLCM) from Univ. Warsaw,
- ICON/McSnow (http://gitlab.com/sbrdar/mcsnow) from DWD,

- INC/LCM from LANL/Leeds,
- EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,
- PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,
- CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,
- UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,
- Pencil-Code (http://pencil-code.nordita.org) from Nordita/UC,
- SCALE (http://scale.aics.riken.jp/) from RIKEN,
- UWLCM (http://github.com/igfuw/UWLCM) from Univ. Warsaw,
- ICON/McSnow (http://gitlab.com/sbrdar/mcsnow) from DWD,
- ASAM (http://asam.tropos.de/) from TROPOS.

INC/LCM (and related works)

- soluble vs. non-soluble aerosol studies
- global-warming mitigation geoengineering studies

INC/LCM (and related works)

highlights

- soluble vs. non-soluble aerosol studies
- global-warming mitigation geoengineering studies

- Andrejczuk, Reisner, Jeffery 2006 (JAS): "Comparison of analytical solutions for the growth of cloud droplets against Eulerian and Lagrangian numerical formulations"
- Andrejczuk, Reisner, Henson, Dubey & Jeffery 2008 (JGR): "The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type?"
- Andrejczuk, Grabowski, Reisner & Gadian 2010 (JGR): "Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model"
- Andrejczuk, Gadian, Blyth 2014 (AR): "Numerical simulations of stratocumulus cloud response to aerosol perturbation"

EULAG-LCM (and related works)

- particle-based ice microphysics
- contrail-to-cirrus transition simulations

EULAG-LCM (and related works)

highlights

- particle-based ice microphysics
- contrail-to-cirrus transition simulations

- Sölch & Kärcher 2010 (QJRMS): "A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking"
- Unterstrasser & Sölch 2010 (ACP): "Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model"
- Unterstrasser & Sölch 2014 (GMD): "Optimisation of the simulation particle number in a Lagrangian ice microphysical model"
- Unterstrasser 2014 (JGR): "Large-eddy simulation study of contrail microphysics and geometry during the vortex phase and consequences on contrail-to-cirrus transition"
- Unterstrasser, Hoffmann & Lerch 2017 (GMD): "Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations"

PALM-LES (and related works)

- turbulence-enhancement of coalescence, spectrum broadening
- derivation of autoconversion rates through ab-initio simulations
- Linear Eddy Model (LEM) → mixing inhomogeneity

PALM-LES (and related works)

highlights

- turbulence-enhancement of coalescence, spectrum broadening
- derivation of autoconversion rates through ab-initio simulations
- Linear Eddy Model (LEM) → mixing inhomogeneity

- Riechelmann, Noh & Raasch 2012 (NJP): "A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision"
- Hoffmann, Raasch & Noh 2015 (AR): "Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM-LES approach"
- Hoffmann, Noh & Raasch 2017 (JAS): "The route to raindrop formation in a shallow cumulus cloud simulated by a Langrangian cloud model"
- Schwenkel, Hoffmann & Raasch 2018 (GMD): "Improving Collisional Growth in Lagrangian Cloud Models: Development and Verification of a New Splitting Algorithm"
- Noh, Oh, Hoffmann & Raasch 2018 (JAS): "A Cloud Microphysics Parameterization for Shallow Cumulus Clouds Based on Lagrangian Cloud Model Simul."
- Hoffmann, Yamaguchi & Feingold 2019 (JAS): "Inhomogeneous Mixing in Lagrangian Cloud Models: Effects on the Production of Precipitation Embryos"

CReSS (and related works)

- particle-based microphysics vs. praticle-based measurements
- new particle formation studies

CReSS (and related works)

highlights

- particle-based microphysics vs. praticle-based measurements
- new particle formation studies

- Arabas & Shima 2013 (JAS): "Large Eddy Simulations of Trade-Wind Cumuli using Particle-Based Microphysics with Monte-Carlo Coalescence"
- Shima, Hasegawa & Kusano 2015 (EGU Vienna): "Preliminary numerical study on the cumulus-stratus transition induced by the increase of formation rate of aerosols"

CReSS - RICO 24h LES of cumulus cloud field

(Arabas & Shima 2013, JAS)

UCLA-LES (and related works)

- lacktriangle bulk cloud μ -physics + particle-based rain
- recirculation of raindrops

UCLA-LES (and related works)

highlights

- **b** bulk cloud μ -physics + particle-based rain
- recirculation of raindrops

- Naumann & Seifert 2015 (JAMES): "A Lagrangian Drop Model to Study Warm Rain Microphysical Processes in Shallow Cumulus"
- Naumann & Seifert 2016 (JAMES): "Recirculation and growth of raindrops in simulated shallow cumulus"
- Naumann & Seifert 2016 (JAS): "Evolution of the Shape of the Raindrop Size Distribution in Simulated Shallow Cumulus"

Pencil-Code (and related works)

- turbulence effects on collisions
- turbulence effects on condensation
- implemented in general-purpose CFD code

Pencil-Code (and related works)

highlights

- turbulence effects on collisions
- turbulence effects on condensation
- implemented in general-purpose CFD code

<u>ref</u>erences

- Li, Brandenburg, Haugen & Svensson 2017 (JAMES): "Eulerian and Lagrangian approaches to multidimensional condensation and collection"
- Li, Brandenburg, Svensson, Haugen, Mehlig & Rogachevskii (2018 (JAS): "Effect of turbulence on collisional growth of cloud droplets"
- Li, Svensson, Brandenburg & Haugen 2019 (ACP): "Cloud droplets growth due to supersaturation fluctuations in stratiform clouds"

SCALE (and related works)

- numerical convergence studies down to 12.5/10 m resolution
- ice particles represented by porous spheroids + Monte-Carlo
- deep convective studies
- incorporation of aerosol sources (in progress)

SCALE (and related works)

highlights

- numerical convergence studies down to 12.5/10 m resolution
- ice particles represented by porous spheroids + Monte-Carlo
- deep convective studies
- incorporation of aerosol sources (in progress)

- Sato, Shima & Tomita 2017 (ASL): "A grid refinement study of trade wind cumuli simulated by a Lagrangian cloud microphysical model: the super-droplet method"
- Sato, Shima & Tomita 2018 (JAMES): "Numerical Convergence of Shallow Convection Cloud Field Simulations: Comparison Between Double-Moment Eulerian and Particle-Based Lagrangian Microphysics Coupled to the Same Dynamical Core"
- Shima, Sato, Hashimoto & Misumi 2018 (AMS Vancouver): "Application of the Super-Droplet Method to Mixed-Phase Clouds Based on the Porous Spheroid Approximation of Ice Particles"

UWLCM (and related works)

- Hoppel-gap resolving aqueous chemistry
- GPU-resident (or multi-threaded) microphysics in C++

UWLCM (and related works)

highlights

- → Hoppel-gap resolving aqueous chemistry
- GPU-resident (or multi-threaded) microphysics in C++

- Arabas, Jaruga, Pawlowska & Grabowski 2015 (GMD): "libcloudph++ 1.0: single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics..."
- **Jaruga & Pawlowska 2018** (GMD): "libcloudph++ 1.1: aqueous phase chemistry extension of the Lagrangian cloud microphysics scheme"
- Dziekan & Pawlowska 2017 (ACP): "Stochastic coalescence in Lagrangian cloud microphysics"
- Grabowski & Abade 2017 (JAS): "Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations"
- Grabowski, Dziekan & Pawlowska 2018 (GMD): "Lagrangian condensation microphysics with Twomey CCN activation"
- Dziekan, Waruszewski & Pawlowska 2019 (GMD): "University of Warsaw Lagrangian Cloud Model (UWLCM)..."

UWLCM - DYCOMS example

https://www.youtube.com/watch?v=BEidkhpw-MA

ICON/McSnow (and related works)

- Monte-carlo mixed-phase microphysics
- deep convection studies

ICON/McSnow (and related works)

highlights

- Monte-carlo mixed-phase microphysics
- deep convection studies

- **Brdar & Seifert 2018** (JAMES): "A Monte-Carlo particle model for riming and aggregation of ice particles in a multidimensional microphysical phase space"
- Siewert, Seifert & Brdar 2018 (AMS Vancouver): "The Novel Particle-based Microphysical Model McSnow: 1D and 3D Results"

challenges (→ opportunities)

no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- **by-design non-negativity** of the derived density/concentration fields

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- **by-design non-negativity** of the derived density/concentration fields
- **ab-initio** (particle-level) vs. parametrised (bulk/moment/bin) formulations

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- **by-design non-negativity** of the derived density/concentration fields
- **ab-initio** (particle-level) vs. parametrised (bulk/moment/bin) formulations
- favourable scaling (particle attributes vs. Eulerian curse of dimensionality)

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- **by-design non-negativity** of the derived density/concentration fields
- **ab-initio** (particle-level) vs. parametrised (bulk/moment/bin) formulations
- favourable scaling (particle attributes vs. Eulerian curse of dimensionality)
- lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- by-design non-negativity of the derived density/concentration fields
- **ab-initio** (particle-level) vs. parametrised (bulk/moment/bin) formulations
- favourable scaling (particle attributes vs. Eulerian curse of dimensionality)
- lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)
- subgrid cloud fraction is effectively represented (robust wrt Eulerian grid)

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- **by-design non-negativity** of the derived density/concentration fields
- **ab-initio** (particle-level) vs. parametrised (bulk/moment/bin) formulations
- favourable scaling (particle attributes vs. Eulerian curse of dimensionality)
- lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)
- subgrid cloud fraction is effectively represented (robust wrt Eulerian grid)
- hybrid supercomputing adaptable (GPU-resident particles)

- no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
- **by-design non-negativity** of the derived density/concentration fields
- **ab-initio** (particle-level) vs. parametrised (bulk/moment/bin) formulations
- favourable scaling (particle attributes vs. Eulerian curse of dimensionality)
- lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)
- **subgrid cloud fraction** is effectively represented (robust wrt Eulerian grid)
- hybrid supercomputing adaptable (GPU-resident particles)
- **Iucky-droplet & GCCN friendly** Monte-Carlo (non-SCE) coalescence

aerosol budget (precipication/scavenging sinks vs. long-term LES)

- aerosol budget (precipication/scavenging sinks vs. long-term LES)
- ensemble analysis (multiple realisations, probabilistic "thinking")

- aerosol budget (precipication/scavenging sinks vs. long-term LES)
- ensemble analysis (multiple realisations, probabilistic "thinking")
- **†** (de)activation nonlinearities → numerical/resolution challenges

- aerosol budget (precipication/scavenging sinks vs. long-term LES)
- ensemble analysis (multiple realisations, probabilistic "thinking")
- **†** (de)activation nonlinearities → numerical/resolution challenges
- Eulerian/Lagrangian dynamics consistency (resolved and subgrid)

- aerosol budget (precipication/scavenging sinks vs. long-term LES)
- ensemble analysis (multiple realisations, probabilistic "thinking")
- **to a continuation nonlinearities** → numerical/resolution challenges
- Eulerian/Lagrangian dynamics consistency (resolved and subgrid)
- **radiative transfer** → visualisations & radiative cooling

- aerosol budget (precipication/scavenging sinks vs. long-term LES)
- ensemble analysis (multiple realisations, probabilistic "thinking")
- **to a continuation nonlinearities** → numerical/resolution challenges
- Eulerian/Lagrangian dynamics consistency (resolved and subgrid)
- radiative transfer → visualisations & radiative cooling
- commensurable comparisons wrt bin/bulk: "aerosol water", cannot "switch off" aerosol processing, ripening, etc (ab-initio)

- aerosol budget (precipication/scavenging sinks vs. long-term LES)
- ensemble analysis (multiple realisations, probabilistic "thinking")
- **(de)activation nonlinearities** → numerical/resolution challenges
- Eulerian/Lagrangian dynamics consistency (resolved and subgrid)
- radiative transfer → visualisations & radiative cooling
- commensurable comparisons wrt bin/bulk: "aerosol water", cannot "switch off" aerosol processing, ripening, etc (ab-initio)
- charge, isotopic ratio, ...

news: BAMS super-droplet review (Grabowski et al. '19)

MODELING OF CLOUD MICROPHYSICS

Can We Do Better?

WOJCIECH W. GRABOWSKI, HUGH MORRISON, SHIN-ICHIRO SHIMA, GUSTAVO C. ABADE,
PIOTR DZIEKAN, AND HANNA PAWLOWSKA

The Lagrangian particle-based approach is an emerging technique to model cloud microphysics and its coupling with dynamics, offering significant advantages over Eulerian approaches typically used in cloud models.

doi:10.1175/BAMS-D-18-0005.1

particle-based-cloud-modelling.network

http://particle-based-cloud-modelling.network

particle-based-cloud-modelling.network

View on GitHub

Particle-Based Cloud Modelling Network Initiative

Mailing List

Venue for communications relevant to the development and applications of particle-based models of atmospheric clouds: announcements of meetings, calls for submissions, funding opportunities, scholarships, openings, software/data releases, publications and other notices warranting community-wide dissemination.

Archives and subscription management:

https://mailing.uj.edu.pl/sympa/info/particle-based-cloud-modelling

Event Calendar

Database of events announced on the mailing list:

Thank you for your attention!