On applications of MPDATA in cloud microphysics and finance

Sylwester Arabas
Jagiellonian University

uj.edu.pl

Jagiellonian University, Kraków, Poland

Jagiellonian University, Kraków, Poland

.. founded in 1364, among 20 world oldest (in cont. operation)

Jagiellonian University, Kraków, Poland

\%. founded in 1364, among 20 world oldest (in cont. operation)
:- ca. 40000 students, 7000 staff (4000 acad.), 16 faculties

Jagiellonian University, Kraków, Poland

\%. founded in 1364, among 20 world oldest (in cont. operation)
:- ca. 40000 students, 7000 staff (4000 acad.), 16 faculties
: American Studies since 1991

Jagiellonian University, Kraków, Poland

\%. founded in 1364, among 20 world oldest (in cont. operation)
:- ca. 40000 students, 7000 staff (4000 acad.), 16 faculties
: American Studies since 1991
: host to Smoluchowski Institute of Physics

Jagiellonian University, Kraków, Poland

$\%$ founded in 1364, among 20 world oldest (in cont. operation)
:- ca. 40000 students, 7000 staff (4000 acad.), 16 faculties
: American Studies since 1991
: host to Smoluchowski Institute of Physics
:- 1917 Smoluchowski elected as Rector (professor since 1913)

Maurycy Pius Rudzki (1862-1916)

Maurycy Pius Rudzki

From Wikipedia, the free encyclopedia
Maurycy Pius Rudzki (b. 1862, d. 1916) was the first person to call himself a professor of geophysics. He held the Chair of Geophysics at the Jagiellonian University in Krakow, and established the Institute of Geophysics there in 1895. His research specialty was elastic anisotropy, as applied to wave propagation in the earth, and he established many of the fundamental results in that arena. ${ }^{[1]}$

Maurycy Pius Rudzki

Maurycy Pius Rudzki (1862-1916)

Maurycy Pius Rudzki

From Wikipedia, the free encyclopedia

Maurycy Pius Rudzki (b. 1862, d. 1916) was the first person to call himself a professor of geophysics. He held the Chair of Geophysics at the Jagiellonian University in Krakow, and established the Institute of Geophysics there in 1895. His research specialty was elastic anisotropy, as applied to wave propagation in the earth, and he established many of the fundamental results in that arena. ${ }^{[1]}$

Maurycy Pius Rudzki

"Principles of Meteorology" book (1917)

DR M. P. RUDZKI
PROPESOR UNIWERSYTETU JAOLELLONSYIEOO, DYREKTOR OBSERWATOKYUM ASTRONOMICZNEOO W KRAKOWIE.

ZASADY
 METEOROLOGII

WARSZAWA.
SKlad olówny w ksicgarni e. wende I spólka.
"SCIENTIA"

HERETURL - DEECTEX - TDIJCR
bחniver minyazo
ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE Carnegie library of pittsburgh

rédige sons les auspices de la societé mathématioue d'ansterdan.

SEPTEMBER 1921
No. 3

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw.
Scientia, v.29, 1921, no.5. p.389. 11/4 p.

msterdam

DELSMAN EN NOLTHENIUS
U 7. M. P. Rudzki. Zasady meteorologii (Principes de météorologie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scientia, XXIX, 1021 (p. $389-380$).
http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)
"SCIENTIA,

bחniver mingazo

BOTOBNA Mcoca Zasmedmal LONEOS paris

TECHNICAL BOOK REVIEW INDEX

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

Vol. 5
SEPTEMBER 1921

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5. p.389. 11/4 p.

DES

DELSMAN EN NOLTHENIUS
U 7. M. P. Rudzki. Zasady meteorologii (Principes de météoro logie). Un vol. 8, p. 180. Varsovie, E. Wende, 1017, Scientia, XXIX, 1021 (p. 389-390).
http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)
... in the atmosphere, nuclei are needed for condensation

"SCIENTIA",

bחnivo migsamo

TECHNICAL BOOK REVIEW INDEX

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH
\qquad allas: sominit

Mcola Zaxicumal Hivas

Vol. 5
SEPTEMBER 1921
Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5. p.389. 11/4 p.

Des

REDIGEE SOOS LES AISPCCES DE LA SOCIEEEE MATHEKMTIOUE D'ASTERDAK.

DELSMAN EN NOLTHENIUS 1922

U 7. M. P. Rudzki. Zasady meteorologii (Principes de météorologie). Un vol. 8, p. 180. Varsovie, E. Wende, 1017, Scientia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c.

"SCIENTIA,

bாnive mimyazo
ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

SEPTEMBER 1921
\qquad LOEEOS
alis.
 TiT小

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5. p.389. 11/4 p.

PUBLLCATIIOSS MITHEMUNTILOUESS

REDIGEE SOOS LES AISPCCES DE LA SOCIEEEE MATHEKMTIOUE D'ASTERDAK.

DELSMAN EN NOLTHENIUS
U 7. M. P. Rudzki. Zasady meteorologii (Principes de météorologie). Un vol. 8, p. 180. Varsovie, E. Wende, 1017, Scienfia, XXIX, 1021 (p. 389-390).
http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)
... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet

"SCIENTIA,
bonive mimsazo

TECHNICAL BOOK REVIEW INDEX

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

BOHOBXA

SEPTEMBER 1921

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5. p.389. 11/4 p.

REVUE SEMESTRIELLE
Des

PUBLLCATIONSS NATHEXITILOUES

DELSMAN EN NOLTHENIUS
1922

U 7. M. P. Rudzki. Zasady meteorologii (Principes de météoro logie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scienfia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet ... everything we have said so far only applies to to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a single drop that falls but a whole plenty

TECHNICAL BOOK REVIEW INDEX

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

Ther
bחntive migyazo

Vol. 5

Rudzki, M. P

Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5. p.389. 11/4 p.

PUBLLCATIIOSS MITHEMUNTILOUESS

REDGEES SOOS LES AUSPICES DE LA SOCIÉTE MATHÉMATIOUE D'AMSTERDAK.
REVUE SEMESTRIELLE
des
amsterdam
DELSMAN EN NOLTHENIUS

U 7. M. P. Rudzki. Zasady meteorologii (Principes de météorologie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scienfia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet ... everything we have said so far only applies to to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a single drop that falls but a whole plenty ... contrast between the sizes of drops, of which clouds are made up, and the size of raindrops, is so great that the latter, of course, can not come straight from the condensation, only from the merging of many small ones droplets

$66 \sim_{\text {Pr }}$ (T) bחnivio miayazo

TECHNICAL BOOK REVIEW INDEX

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5, p.389. i 1/4 p.

REVUE SEMESTRIELLE

DEs
 PUBLLCATIIOSS MITHEMUNTILOUESS

REDGEES SOOS LES AUSPICES DE LA SOCIÉTE MATHÉMATIOUE D'AMSTERDAK.
amsterdam
DELSMAN EN NOLTHENIUS 1922

U 7. M. P. Rudzki. Zasady meteorologii (Principes de météorologie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scienfia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet ... everything we have said so far only applies to to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a single drop that falls but a whole plenty ... contrast between the sizes of drops, of which clouds are made up, and the size of raindrops, is so great that the latter, of course, can not come straight from the condensation, only from the merging of many small ones droplets ... the drops are all different, one smaller, the other bigger, but most often drops occur with weight ratios of 1,2,4,8

$66 \sim_{\text {Pr }}$ (T) bחntive migyazo

TECHNICAL BOOK REVIEW INDEX

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5, p.389. i 1/4 p.

REVUE SEMESTRIELLE
Des

redgete soos les auspices de la société mathématioue drausterdan.
amsterdam
DELSMAN EN NOLTHENIUS
1922
U 7. M. P. Rudzki. Zasady meteorologii (Principes de météoro logie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scienfia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet ... everything we have said so far only applies to to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a single drop that falls but a whole plenty ... contrast between the sizes of drops, of which clouds are made up, and the size of raindrops, is so great that the latter, of course, can not come straight from the condensation, only from the merging of many small ones droplets ... the drops are all different, one smaller, the other bigger, but most often drops occur with weight ratios of $1,2,4,8 \ldots$ we thus conclude that droplets most often combine with those of equal size

 bחntive migyazo

TECHNICAL BOOK REVIEW INDEX

 TARISISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

Vol. 5

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.29, 1921, no.5. p.389. 11/4 p.

REVUE SEMESTRIELLE

des
 PUBLLCATIONS MITHEMUNTILOUESS

RÉDGEE SOOS LES AUSPICES DE LA SOCIÉTÉ MATHÉMATIOOE D'AMSTERDAM.

msterdam

DELSMAN EN NOLTHENIUS

U 7. M. P. Rudzki. Zasady meteorologii (Principes de météoro logie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scientia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet ... everything we have said so far only applies to to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a single drop that falls but a whole plenty ... contrast between the sizes of drops, of which clouds are made up, and the size of raindrops, is so great that the latter, of course, can not come straight from the condensation, only from the merging of many small ones droplets ... the drops are all different, one smaller, the other bigger, but most often drops occur with weight ratios of $1,2,4,8 \ldots$ we thus conclude that droplets most often combine with those of equal size ... we know from hydrodynamics that air movement in between two balls running in parallel and flying together, is such that the balls are attracted to each other

 bחnivio miayazo

ISSUED BY THE TECHNOLOGY DEPARTMENT OF THE CARNEGIE LIBRARY OF PITTSBURGH

Rudzki, M. P.
Zasady meteorologii. 160 p. 1917. Wende, Warsaw. Scientia, v.a9, 1921, no.5. p.389. 11/4 p.

REVUE SEMESTRIELLE
Des

REDGEES SOOS LES AUSPICES DE LA SOCIÉTE MATHÉMATIOUE D'AMSTERDAK.
amsterdam
DELSMAN EN NOLTHENIUS 1922

U 7. M. P. Rudzki. Zasady meteorologii (Principes de météoro logie). Un vol. 8, p. 180. Varsovie, E. Wende, 1917, Scientia, XXIX, 1021 (p. 389-390).

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)

... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour even when the air is not saturated yet ... everything we have said so far only applies to to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a single drop that falls but a whole plenty ... contrast between the sizes of drops, of which clouds are made up, and the size of raindrops, is so great that the latter, of course, can not come straight from the condensation, only from the merging of many small ones droplets ... the drops are all different, one smaller, the other bigger, but most often drops occur with weight ratios of $1,2,4,8 \ldots$ we thus conclude that droplets most often combine with those of equal size ... we know from hydrodynamics that air movement in between two balls running in parallel and flying together, is such that the balls are attracted to each other ... we prefer to keep quiet about the impact of electricity on the merging of droplets ...

plan of the talk

- MPDATA (Smolarkiewicz '83 ... Smolarkiewicz et al. 20XX)
- MPDATA goes open source: (Arabas et al. '14, Jaruga et al. '15)
- MPDATA meets Black-Scholes (Arabas \& Farhat, 2019)
- MPDATA \& diffusional growth (with Olesik \& Unterstraßer, WIP)

MPDATA

a.k.a. the Smolarkiewicz method

MPDATA in a nutshell (Smolarkiewicz 1983 MWR . . .)
transport PDE: $\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)=0$

MPDATA in a nutshell (Smolarkiewicz 1983 MWR . . .)

$$
\begin{aligned}
& \text { transport PDE: } \frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)=0 \\
& \psi_{i}^{n+1}=\psi_{i}^{n}-\left[F\left(\psi_{i}^{n}, \psi_{i+1}^{n}, \mathcal{C}_{i+1 / 2}\right)-F\left(\psi_{i-1}^{n}, \psi_{i}^{n}, \mathcal{C}_{i-1 / 2}\right)\right] \\
& F\left(\psi_{L}, \psi_{R}, \mathcal{C}\right)=\max (\mathcal{C}, 0) \cdot \psi_{L}+\min (\mathcal{C}, 0) \cdot \psi_{R} \quad \text { upvind } \\
& \mathcal{C}=v \Delta t / \Delta x
\end{aligned}
$$

MPDATA in a nutshell (Smolarkiewicz 1983 MWR . . .)

$$
\begin{aligned}
& \text { transport PDE: } \frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)=0 \\
& \psi_{i}^{n+1}=\psi_{i}^{n}-\left[F\left(\psi_{i}^{n}, \psi_{i+1}^{n}, \mathcal{C}_{i+1 / 2}\right)-F\left(\psi_{i-1}^{n}, \psi_{i}^{n}, \mathcal{C}_{i-1 / 2}\right)\right] \\
& F\left(\psi_{L}, \psi_{R}, \mathcal{C}\right)=\max (\mathcal{C}, 0) \cdot \psi_{L}+\min (\mathcal{C}, 0) \cdot \psi_{R} \\
& \mathcal{C}=v \Delta t / \Delta x
\end{aligned}
$$

modified eq

$$
\begin{aligned}
& \text { transport PDE: } \frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)=0 \\
& \psi_{i}^{n+1}=\psi_{i}^{n}-\left[F\left(\psi_{i}^{n}, \psi_{i+1}^{n}, \mathcal{C}_{i+1 / 2}\right)-F\left(\psi_{i-1}^{n}, \psi_{i}^{n}, \mathcal{C}_{i-1 / 2}\right)\right] \\
& F\left(\psi_{L}, \psi_{R}, \mathcal{C}\right)=\max (\mathcal{C}, 0) \cdot \psi_{L}+\min (\mathcal{C}, 0) \cdot \psi_{R} \\
& \mathcal{C}=v \Delta t / \Delta x
\end{aligned}
$$

modified eq.: $\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)+\underbrace{K \frac{\partial^{2} \psi}{\partial x^{2}}}_{\text {numerical diffusion }}+\ldots=0$ MEA

$$
\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)+\frac{\partial}{\partial x} \underbrace{\left[\left(-\frac{K}{\psi} \frac{\partial \psi}{\partial x}\right) \psi\right]}_{\text {antidiffusive flux }}=0
$$

MPDATA in a nutshell (Smolarkiewicz 1983 MWR . . .)

$$
\begin{aligned}
& \text { transport PDE: } \frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)=0 \\
& \psi_{i}^{n+1}=\psi_{i}^{n}-\left[F\left(\psi_{i}^{n}, \psi_{i+1}^{n}, \mathcal{C}_{i+1 / 2}\right)-F\left(\psi_{i-1}^{n}, \psi_{i}^{n}, \mathcal{C}_{i-1 / 2}\right)\right] \\
& F\left(\psi_{L}, \psi_{R}, \mathcal{C}\right)=\max (\mathcal{C}, 0) \cdot \psi_{L}+\min (\mathcal{C}, 0) \cdot \psi_{R} \\
& \mathcal{C}=v \Delta t / \Delta x
\end{aligned}
$$

modified eq

$\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)+\frac{\partial}{\partial x} \underbrace{\left[\left(-\frac{K}{\psi} \frac{\partial \psi}{\partial x}\right) \psi\right]}_{\text {antidiffusive flux }}=0$

MPDATA: reverse numerical diffusion by integrating the antidiffusive flux using upwind (in a corrective iteration)

$$
\mathcal{C}_{i+1 / 2}^{\prime}=\left(\left|\mathcal{C}_{i+1 / 2}\right|-\mathcal{C}_{i+1 / 2}^{2}\right) A_{i+1 / 2}
$$

$$
A_{i+1 / 2}=\frac{\psi_{i+1}-\psi_{i}}{\psi_{i+1}+\psi_{i}}
$$

MPDATA: key features (review: e.g. Smolarkiewicz 2006)

Multidimensional Positive Definite Advection Transport Algorithm

MPDATA: key features (review: e.g. Smolarkiewicz 2006)

Multidimensional Positive Definite Advection Transport Algorithm
" Multidimensional:
antidiffusive fluxes include cross-dimensional terms, as opposed to dimensionally-split schemes

MPDATA: key features (review: e.g. Smolarkiewicz 2006)

Multidimensional Positive Definite Advection Transport Algorithm
" Multidimensional:
antidiffusive fluxes include cross-dimensional terms, as opposed to dimensionally-split schemes
" Positive Definite:
sign-preserving + "infinite-gauge formulation for variable-sign fields

MPDATA: key features (review: e.g. Smolarkiewicz 2006)

Multidimensional Positive Definite Advection Transport Algorithm
. Multidimensional:
antidiffusive fluxes include cross-dimensional terms, as opposed to dimensionally-split schemes
= Positive Definite:
sign-preserving + "infinite-gauge formulation for variable-sign fields
" Conservative:
upstream for all iterations (\rightsquigarrow stability cond.)

MPDATA: key features (review: e.g. Smolarkiewicz 2006)

Multidimensional Positive Definite Advection Transport Algorithm
. Multidimensional:
antidiffusive fluxes include cross-dimensional terms, as opposed to dimensionally-split schemes
= Positive Definite:
sign-preserving + "infinite-gauge formulation for variable-sign fields
". Conservative: upstream for all iterations (\rightsquigarrow stability cond.)
\# High-Order Accurate:
up to 3 rd-order in time and space (dep. on options \& flow)

MPDATA: key features (review: e.g. Smolarkiewicz 2006)

Multidimensional Positive Definite Advection Transport Algorithm
" Multidimensional:
antidiffusive fluxes include cross-dimensional terms, as opposed to dimensionally-split schemes
\# Positive Definite:
sign-preserving + "infinite-gauge formulation for variable-sign fields
" Conservative:
upstream for all iterations (\rightsquigarrow stability cond.)
\# High-Order Accurate:
up to 3rd-order in time and space (dep. on options \& flow)
. Monotonic:
with Flux-Corrected Transport option

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell $\mathrm{t} / \mathrm{dt}=0$

mpdata<3>t/dt=0

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

mpdata<3> t/dt=6

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell $\mathrm{t} / \mathrm{dt}=0$

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

mpdata<3> $\mathrm{t} / \mathrm{dt}=12$

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata<3>t/dt=0

mpdata<3>t/dt=18

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata<3>t/dt=0

mpdata<3> $\mathrm{t} / \mathrm{dt}=24$

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

mpdata<3> t/dt=30

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata<3>t/dt=0

mpdata<3>t/dt=36

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

mpdata $<3>\mathrm{t} / \mathrm{dt}=42$

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

mpdata<3>t/dt=48

2D example (Arabas et al. 2014, Sci. Prog.)

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

donorcell $\mathrm{t} / \mathrm{dt}=0$
donorcell $\mathrm{t} / \mathrm{dt}=54$

2D example (Arabas et al. 2014, Sci. Prog.)

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

donorcell $\mathrm{t} / \mathrm{dt}=0$
donorcell $\mathrm{t} / \mathrm{dt}=60$

mpdata<3> $\mathrm{t} / \mathrm{dt}=60$

2D example (Arabas et al. 2014, Sci. Prog.)

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

donorcell $\mathrm{t} / \mathrm{dt}=0$
donorcell $\mathrm{t} / \mathrm{dt}=66$

mpdata<3> $\mathrm{t} / \mathrm{dt}=66$

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata<3>t/dt=0

mpdata $<3>\mathrm{t} / \mathrm{dt}=72$

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata<3>t/dt=0

mpdata<3> $\mathrm{t} / \mathrm{dt}=78$

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata $<3>\mathrm{t} / \mathrm{dt}=0$

mpdata<3> $\mathrm{t} / \mathrm{dt}=84$

2D example (Arabas et al. 2014, Sci. Prog.)

mpdata<3>t/dt=0

donorcell t/dt=0
donorcell t/dt=90

2D example (Arabas et al. 2014, Sci. Prog.)

donorcell t/dt=0

mpdata<3>t/dt=0

mpdata<3>t/dt=96

libmpdata++

libmpdata $++:$ new open-source implementation in $\mathrm{C}++$

Jaruga et al. 2015

Geosci. Model Dev., 8, 1005-1032, 2015
www.geosci-model-dev.net/8/1005/2015/

Geoscientific Model Development

libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations

A. Jaruga ${ }^{1}$, S. Arabas ${ }^{1}$, D. Jarecka ${ }^{1,2}$, H. Pawlowska ${ }^{1}$, P. K. Smolarkiewicz ${ }^{3}$, and M. Waruszewski ${ }^{1}$
${ }^{1}$ Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
${ }^{2}$ National Center for Atmospheric Research, Boulder, CO, USA
${ }^{3}$ European Centre for Medium-Range Weather Forecasts, Reading, UK

libmpdata ++ : rotating cone test

$$
(t / d t=0)
$$

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=157$)

libmpdata ++ : rotating cone test

($/ \mathrm{dt}=314$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=471$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=628$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=628$)

64 LOC using libmpdata++

```
    1 #include <libmpdata++/solvers/mpdata.hpp>
    #include <libmpdata++/concurr/serial.hpp>
    #include <libmpdata++/output/gnuplot.hpp>
    4
    s int main()
    { {
        namespace lmpdt = libmpdataxx;
        const int nx=64, ny=64, nt = 628;
        // compile-time parameters
        struct ct_params_t : lmpdt::ct_params_default_t
        {
            using real t = double;
            enum { n_dims = 2 };
            enum { n_eqns = 1 };
        };
        // solver choice
        using run_t = lmpdt::output::gnuplot< lmpdt::solvers::mpdata< ct_params_t >>;
        // runtime parameters
        typename run_t::rt_params_t p;
        p.grid_size = {nx+1, ny+1};
        p.outfreq = nt/4;
        p.gnuplot_output = "out_%S_%d.svg";
        p.gnuplot_with = "lines";
        p.gnuplot_cbrange = p.gnuplot_zrange = "[0:5]";
        // sharedmem concurency and boundary condition choice
        lmpdt::concurr::serial<
            run_t,
            lmpdt::bcond::open, lmpdt::bcond::open, // x-left, x-right
            lmpdt::bcond::open, lmpdt::bcond::open // y-left, y-right
        > run(p);
```

35

```
// initial condition
{
    using namespace blitz::tensor;
    auto psi = run.advectee();
    const double
        dt = .1, dx = 1, dy = 1, omega = .1,
        h = 4., h0 = 1, r = .15 * nx * dx,
        x0 =.5 * nx * dx, y0 = .75 * ny * dy,
        xc =.5 * nx * dx, yc = .50 * ny * dy;
    // cone shape cut at h0
    psi = blitz::pow(i * dx - x0, 2) +
                blitz::pow(j * dy - y0, 2);
    psi = h0 + where(
        psi - pow(r, 2) <= 0, // if
        h - blitz::sqrt(psi / pow(r/h,2)), // then
        0. // else
    );
    // constant-angular-velocity rotational field
    run.advector(0) = omega * (j * dy - yc) * dt/dx;
    run.advector(1) = -omega * (i * dx - xc) * dt/dy;
}
    // time stepping
    run.advance(nt);
```

35

```
// initial condition
{
    using namespace blitz::tensor;
    auto psi = run.advectee();
    const double
        dt = .1, dx = 1, dy = 1, omega = .1,
        h = 4., h0 = 1, r = .15 * nx * dx,
        x0 =.5 * nx * dx, y0 = .75 * ny * dy,
        xc =.5 * nx * dx, yc = .50 * ny * dy;
    // cone shape cut at h0
    psi = blitz::pow(i * dx - x0, 2) +
                blitz::pow(j * dy - y0, 2);
    psi = h0 + where(
        psi - pow(r, 2) <= 0, // if
        h - blitz::sqrt(psi / pow(r/h,2)), // then
        0. // else
    );
    // constant-angular-velocity rotational field
    run.advector(0) = omega * (j * dy - yc) * dt/dx;
    run.advector(1) = -omega * (i * dx - xc) * dt/dy;
```

\}
// time stepping
run.advance(nt);
1 cmake_minimum_required(VERSION 3.0)
2 project (hello_world CXX)
3 find_package(libmpdata++)
4 set(CMAKE_CXX_FLAGS \$\{libmpdataxx_CXX_FLAGS_RELEASE\})
5 add_executable(hello_world hello_world.cpp)
6 target_link_libraries (hello_world $\$\{$ libmpdataxx_LIBRARIES $\})$

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=0$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=157$)

libmpdata ++ : rotating cone test

($/ \mathrm{dt}=314$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=471$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=628$)

libmpdata ++ : rotating cone test

($\mathrm{t} / \mathrm{dt}=628$)

64 LOC using libmpdata++

with multi-threading \rightsquigarrow also 64 LOC!

```
2c2
< #include <libmpdata++/concurr/serial.hpp>
---
> #include <libmpdata++/concurr/threads.hpp>
30c30
< lmpdt::concurr::serial<
---
> lmpdt::concurr::threads<
```

```
$ top
```

-••
PID USER PR NI S \%CPU \%MEM nTH TIME+ COMMAND
21031 slayoo $20 \quad 0 \quad R \quad 73.7$ 0.1 4 0:01.68 hello_worl 90\%

MPI + threads \rightsquigarrow also 64 LOC!!! (recompilation only)

\$ cmake . -DCMAKE_CXX_COMPILER=mpic++
\$ make
\$ OMP_NUM_THREADS=2 mpirun -np 2 ./hello_world

\$ top

PID USER	PR	NI	S	\%CPU	\%MEM	nTH	TIME+	COMmAND	
19640 slayoo	20	0	R	65.5	0.3	2	0:00.92	hello_worl	98\%
19641 slayoo	20	0	R	64.0	0.3	2	0:00.91	hello_worl	99\%

libmpdata ++ : generalised transport equation

$$
\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R
$$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{\psi} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{\psi} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{\psi} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{u} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{\psi} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{\psi} \psi)=G R$

libmpdata ++ : generalised transport equation

$\partial_{t}(G \psi)+\nabla \cdot(G \vec{\psi} \psi)=G R$

libmpdata++: immersed b.m. (Maciej Waruszewski)

Velocity magnitude [m/s]

libmpdata++: 3D (I)LES (Dziekan et al. 2019)

Article	Assets

University of Warsaw Lagrangian Cloud Model (UWLCM) 1.0: a modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics

Piotr Dziekan, Maciej Waruszewski, and Hanna Pawlowska
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Correspondence: Piotr Dziekan (pdziekan@fuw.edu.p)

Received: 07 Nov 2018 - Discussion started: 04 Feb 2019 - Revised: 03 Jun 2019 - Accepted: 07 Jun 2019 - Published: 01 Jul 2019

https://www. youtube.com/watch?v=BEidkhpw-MA
libmpdata++: summary \& some technicalities
". free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis) reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, . .)
1D, 2D \& 3D integration; optional coordinate transformation four types of solvers:
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency) compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

free and open-souce, public repo: github.com/igfuw/libmpdataxx
" automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D \& 3D integration; optional coordinate transformation four types of solvers:
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency) compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$
free and open-souce, public repo: github.com/igfuw/libmpdataxx automated testsuite, continuous integration (Travis)
. ${ }^{-1}$ reusable - API documented in the paper; out-of-tree setups
\square
1D, 2D \& 3D integration; optional coordinate transformation
four tynes of solvers:
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency)
compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

> free and open-souce, public repo: github.com/igfuw/libmpdataxx automated testsuite, continuous integration (Travis) reusable - API documented in the paper; out-of-tree setups

(\# - comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D \& 3D integration; optional coordinate transformation four types of solvers:
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MP|
separation of concerns (numerics / boundary cond. / io / concurrency)
compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$
> free and open-souce, public repo: github.com/igfuw/libmpdataxx automated testsuite, continuous integration (Travis) reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, . . .)

- = 1D , 2D \& 3D integration; optional coordinate transformation four types of solvers:
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads +MPI
separation of concerns (numerics / boundary cond. / io / concurrency) compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D \& 3D integration; optional coordinate transformation
페 four types of solvers:
> adv
> (homogeneous advection)
> :" adv+rhs (+ right-hand-side terms)
> \% adv+rhs+vip (+ prognosed velocity)
> \% adv+rhs+vip+prs (+ elliptic pressure solver)

implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency)
compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

```
free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups
comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D & 3D integration; optional coordinate transformation
```

" four types of solvers:
: adv
adv+rhs
adv + rhs + vip (+ prognosed velocity)
adv + rhs + vip + prs (+ elliptic pressure solver)
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency)
compact $\mathrm{C}++11$ code ($\mathrm{O}(10) \mathrm{kLOC}$)

libmpdata++: summary \& some technicalities

```
free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups
comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D. 2D & 3D integration; optional coordinate transformation
```

" $=$ four types of solvers:
\% adv
:" adv+rhs adv+rhs+vip $a d v+r h s+v i p+p r s$ (+ elliptic pressure solver)
implemented using Blitz 1 i (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads +MPI
separation of concerns (numerics / boundary cond. / io / concurrency) compact $C++11$ code $(O(10)$ kLOC)

libmpdata++: summary \& some technicalities

```
free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups
comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D & 3D integration; optional coordinate transformation
```

"
\% adv
\% adv+rhs
\%adv+rhs+vip (+ prognosed velocity) adv+rhs+vip+prs (+ elliptic pressure solver)
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency) compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

```
free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups
comprehensive set of MPDATA opts (incl. FCT, infinite-gauge,
1D, 2D & 3D integration; optional coordinate transformation
```

III four types of solvers:
\% adv
(homogeneous advection) (+ right-hand-side terms)
: adv+rhs
\% adv+rhs+vip (+ prognosed velocity)
\% adv+rhs+vip+prs (+ elliptic pressure solver)
implemented using Blitz ++ (no loops, expression templates)
built-in HDF5/XDMF output
parallelisation: threads I MPI
separation of concerns (numerics / boundary cond. / io / concurrency) compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

```
free and open-souce, public repo: github.com/igfuw/libmpdataxx
automated testsuite, continuous integration (Travis)
reusable - API documented in the paper; out-of-tree setups
comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D & 3D integration; optional coordinate transformation
four types of solvers:
```

"I= implemented using Blitz++ (no loops, expression templates)
\square
parallelisation: threads +MPI
separation of concerns (numerics / boundary cond. / io / concurrency)
compact $\mathrm{C}++11$ code ($\mathrm{O}(10) \mathrm{kLOC})$
libmpdata++: summary \& some technicalities
> free and open-souce, public repo: github.com/igfuw/libmpdataxx automated testsuite, continuous integration (Travis) reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
> 1D, 2D \& 3D integration; optional coordinate transformation
> four types of solvers:

implemented using Blitz++ (no loops, expression templates)
" built-in HDF5/XDMF output
parallelisation: threads + MPI
separation of concerns (numerics / boundary cond. / io / concurrency)
compact $\mathrm{C}++11$ code $(\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

free and open-souce, public repo: github.com/igfuw/libmpdataxx automated testsuite, continuous integration (Travis) reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
1D, 2D \& 3D integration; optional coordinate transformation
four types of solvers:
implemented using Blitz++ (no loops, expression templates)
built-in HDF5/XDMF output
"
parallelisation: threads +MPI

```
separation of concerns (numerics / boundary cond. / io / concurrency)
compact C + +11 code (O(10) kLOC)
```


libmpdata++: summary \& some technicalities

> free and open-souce, public repo: github.com/igfuw/libmpdataxx automated testsuite, continuous integration (Travis) reusable - API documented in the paper; out-of-tree setups comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)
> 1D, 2D \& 3D integration; optional coordinate transformation four types of solvers:

implemented using Blitz++ (no loops, expression templates) built-in HDF5/XDMF output parallelisation: threads + MPI
". separation of concerns (numerics / boundary cond. / io / concurrency) compact $\mathrm{C}++11$ code ($\mathrm{O}(10) \mathrm{kLOC})$

libmpdata++: summary \& some technicalities

". free and open-souce, public repo: github.com/igfuw/libmpdataxx
.- automated testsuite, continuous integration (Travis)
". reusable - API documented in the paper; out-of-tree setups
"- comprehensive set of MPDATA opts (incl. FCT, infinite-gauge, ...)

- 1D , 2D \& 3D integration; optional coordinate transformation
- four types of solvers:

$$
\begin{array}{ll}
\quad \text { adv } \quad \text { (homogeneous advection) } \\
\vdots & \text { adv+rhs } \quad(+ \text { right-hand-side terms }) \\
\vdots & \text { adv+rhs+vip } \quad(+ \text { prognosed velocity })
\end{array}
$$

- implemented using Blitz++ (no loops, expression templates)
. built-in HDF5/XDMF output
". parallelisation: threads + MPI
-. separation of concerns (numerics / boundary cond. / io / concurrency)
" compact C++11 code ($\mathrm{O}(10)$ kLOC)
libmpdata ++ : documented applications

libmpdata++: documented applications

= Jarecka et al. 2015 (J. Comp. Phys.):
shallow water eqs, 3D liquid drop spreading under gravity

libmpdata++: documented applications

= Jarecka et al. 2015 (J. Comp. Phys.): shallow water eqs, 3D liquid drop spreading under gravity
" Arabas, Jaruga et al. 2015 (Geosci. Model. Dev.); Jaruga \& Pawlowska 2018 ("): particle-based/Monte-Carlo simulations of clouds
" Jarecka et al. 2015 (J. Comp. Phys.): shallow water eqs, 3D liquid drop spreading under gravity
\# Arabas, Jaruga et al. 2015 (Geosci. Model. Dev.); Jaruga \& Pawlowska 2018 ("): particle-based/Monte-Carlo simulations of clouds
" Waruszewski et al. 2018 (J. Comp. Phys.): MPDATA ext. for 3rd-order accuracy for variable flows
\#. Jarecka et al. 2015 (J. Comp. Phys.): shallow water eqs, 3D liquid drop spreading under gravity
\# Arabas, Jaruga et al. 2015 (Geosci. Model. Dev.); Jaruga \& Pawlowska 2018 ("): particle-based/Monte-Carlo simulations of clouds
" Waruszewski et al. 2018 (J. Comp. Phys.): MPDATA ext. for 3rd-order accuracy for variable flows
= Dziekan et al. 2019 (Geosci. Model Dev.): 3D LES for atm. boundary layer simulations
" Jarecka et al. 2015 (J. Comp. Phys.): shallow water eqs, 3D liquid drop spreading under gravity
\#. Arabas, Jaruga et al. 2015 (Geosci. Model. Dev.); Jaruga \& Pawlowska 2018 ("): particle-based/Monte-Carlo simulations of clouds
". Waruszewski et al. 2018 (J. Comp. Phys.): MPDATA ext. for 3rd-order accuracy for variable flows
= Dziekan et al. 2019 (Geosci. Model Dev.): 3D LES for atm. boundary layer simulations

* Arabas \& Farhat 2019:

Derivative pricing as a transport problem

MPDATA meets Black-Scholes

with Ahmad Farhat (HSBC)

Black-Scholes equation and pricing formulæ

Black-Scholes equation and pricing formulæ

- asset price SDE:
$d S=S(\mu d t+\sigma d w)$

Black-Scholes equation and pricing formulæ

- asset price SDE:
" derivative price:
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$

Black-Scholes equation and pricing formulæ

- asset price SDE:
" derivative price:
" riskless portfolio (asset + option):
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$
$\Pi=-f+\Delta_{t} S$

Black-Scholes equation and pricing formulæ

- asset price SDE:
" derivative price:
" riskless portfolio (asset + option):
"- no arbitrage (riskless interest rate):
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$

$$
\begin{array}{r}
\Pi=-f+\Delta_{t} S \\
d \Pi=\Pi r d t
\end{array}
$$

Black-Scholes equation and pricing formulæ

- asset price SDE:
" derivative price:
= riskless portfolio (asset + option):
". no arbitrage (riskless interest rate):
" Itô's lemma:
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$

$$
\begin{array}{r}
\Pi=-f+\Delta_{t} S \\
d \Pi=\Pi r d t \\
\mathrm{SDE} \rightsquigarrow \mathrm{PDE}
\end{array}
$$

Black-Scholes equation and pricing formulæ

"- asset price SDE:
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$
" riskless portfolio (asset + option):
"- no arbitrage (riskless interest rate):
" Itô's lemma:

$$
\begin{array}{r}
\Pi=-f+\Delta_{t} S \\
d \Pi=\Pi r d t \\
\mathrm{SDE} \rightsquigarrow \mathrm{PDE}
\end{array}
$$

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

Black-Scholes equation and pricing formulæ

"- asset price SDE:
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$

- derivative price:
$f(S, t)$
$\Pi=-f+\Delta_{t} S$
$d \Pi=\Pi r d t$
SDE $\rightsquigarrow \mathrm{PDE}$

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

". terminal value prob., analytic solutions for vanilla options

Black-Scholes equation and pricing formulæ

"- asset price SDE:
$d S=S(\mu d t+\sigma d w)$
$f(S, t)$
" riskless portfolio (asset + option):
"- no arbitrage (riskless interest rate):
" Itô's lemma:

$$
\begin{array}{r}
\Pi=-f+\Delta_{t} S \\
d \Pi=\Pi r d t \\
\mathrm{SDE} \rightsquigarrow \mathrm{PDE}
\end{array}
$$

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

". terminal value prob., analytic solutions for vanilla options

$?$

Black-Scholes \rightsquigarrow ("advection-only") transport problem

$$
\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0
$$

Black-Scholes \rightsquigarrow ("advection-only") transport problem

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0 \\
& \stackrel{ \pm=\ln S}{\frac{\partial f}{\partial t}+\underbrace{\left(r-\sigma^{2} / 2\right)}_{u} \frac{\partial f}{\partial x}+\underbrace{\sigma^{2} / 2}_{-\nu} \frac{\partial^{2} f}{\partial x^{2}}-r f=0}
\end{aligned}
$$

Black-Scholes \rightsquigarrow ("advection-only") transport problem

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0 \\
& \stackrel{t=\ln S}{\frac{\partial f}{\partial t}}+\underbrace{\left(r-\sigma^{2} / 2\right)}_{u} \frac{\partial f}{\partial x}+\underbrace{\sigma^{2} / 2}_{-\nu} \frac{\partial^{2} f}{\partial x^{2}}-r f=0 \\
& \underbrace{\psi=e r t f} \frac{\partial \psi}{\partial t}+u \frac{\partial \psi}{\partial x}-\nu \frac{\partial^{2} \psi}{\partial x^{2}}=0
\end{aligned}
$$

Black-Scholes \rightsquigarrow ("advection-only") transport problem

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0 \\
& \xrightarrow{x=\ln s} \frac{\partial f}{\partial t}+\underbrace{\left(r-\sigma^{2} / 2\right)}_{u} \frac{\partial f}{\partial x}+\underbrace{\sigma^{2} / 2}_{-\nu} \frac{\partial^{2} f}{\partial x^{2}}-r f=0 \\
& \xrightarrow{\psi=e^{-\pi_{f}}} \frac{\partial \psi}{\partial t}+u \frac{\partial \psi}{\partial x}-\nu \frac{\partial^{2} \psi}{\partial x^{2}}=0 \\
& \longrightarrow \frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}\left[\left(u-\frac{\nu}{\psi} \frac{\partial \psi}{\partial x}\right) \psi\right]=0
\end{aligned}
$$

$\frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0$

$$
\xrightarrow{x=\ln s} \frac{\partial f}{\partial t}+\underbrace{\left(r-\sigma^{2} / 2\right)}_{u} \frac{\partial f}{\partial x}+\underbrace{\sigma^{2} / 2}_{-\nu} \frac{\partial^{2} f}{\partial x^{2}}-r f=0
$$

$$
\xrightarrow{\psi=e^{-r_{f}}} \frac{\partial \psi}{\partial t}+u \frac{\partial \psi}{\partial x}-\nu \frac{\partial^{2} \psi}{\partial x^{2}}=0
$$

re last step: Smolarkiewicz and Clark (1986, JCP), Sousa (2009, IJNMF), Smolarkiewicz and Szmelter (2005, JCP), Cristiani (2015, JCSMD)

same trick!

MPDATA in a nutshell (Smolarkiewicz 1983, 1984, ...)

Black-Scholes \rightsquigarrow ("advection-only") transport problem
transport PDE: $\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)=0 \quad \frac{\partial f}{\partial t}+r S \frac{\partial f}{\partial S}+\frac{\sigma^{2}}{2} S^{2} \frac{\partial^{2} f}{\partial S^{2}}-r f=0$

$$
\begin{gathered}
\psi_{i}^{n+1}=\psi_{i}^{n}-\left[F\left(\psi_{i}^{n}, \psi_{i+1}^{n}, \mathcal{C}_{i+1 / 2}\right)-F\left(\psi_{i-1}^{n}, \psi_{i}^{n}, \mathcal{C}_{i-1 / 2}\right)\right] \\
F\left(\psi_{L}, \psi_{R} \mathcal{C}\right)=\underset{\operatorname{Cox}(\mathcal{C}, 0) \cdot \psi_{L}+\min (\mathcal{C}, 0) \cdot \psi_{R}}{\mathcal{C}=v \Delta t / \Delta x} \quad \stackrel{\text { upwind }}{ } \quad \stackrel{x}{ } \quad \stackrel{\ln s}{ } \frac{\partial f}{\partial t}+\underbrace{\left(r-\sigma^{2} / 2\right)}_{u} \frac{\partial f}{\partial x}+\underbrace{\sigma^{2} / 2}_{-\nu} \frac{\partial^{2} f}{\partial x^{2}}-r f=0
\end{gathered}
$$

modified eq.: $\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)+\underbrace{K \frac{\partial^{2} \psi}{\partial x^{2}}}+\ldots=0$ MEA $\quad \underbrace{\psi=e^{r r}} \frac{\partial \psi}{\partial t}+u \frac{\partial \psi}{\partial x}-\nu \frac{\partial^{2} \psi}{\partial x^{2}}=0$
numerical diffusion
$\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}(v \psi)+\frac{\partial}{\partial x} \underbrace{\left[\left(-\frac{K \partial \psi}{\psi \partial x}\right) \psi\right]}_{\text {antidiffusive flux }}=0$

$$
>\frac{\partial \psi}{\partial t}+\frac{\partial}{\partial x}\left[\left(u-\frac{\nu}{\psi} \frac{\partial \psi}{\partial x}\right) \psi\right]=0
$$

MPDATA meets Black-Scholes: test case

" terminal value problem
= payoff function: corridor
truncation error est. (ψ_{a} : B-S formula):
$E=\sqrt{\sum_{i=1}^{n_{x}}\left[\psi_{n}\left(x_{i}\right)-\psi_{a}\left(x_{i}\right)\right]^{2} /\left.\left(n_{x} \cdot n_{t}\right)\right|_{t=0}}$

MPDATA meets Black-Scholes: convergence analysis

MPDATA variant: 2 iterations

+ infinite gauge + FCT + divergent flow + third-order terms

MPDATA meets Black-Scholes: convergence analysis

MPDATA variant: 2 iterations

doi:10.1016/j.cam.2019.05.023

ScienceDirect Journals \& Books

Create account

Journal of Computational and Applied Mathematics Available online 20 June 2019, 112275

```
In Press, Corrected Proof??
```

Derivative pricing as a transport problem: MPDATA solutions to Black-Scholes-type equations \ddagger

Sylwester Arabas ${ }^{\text {a }} \stackrel{\circ}{ }$, Ahmad Farhat ${ }^{\text {b }}$
a Jagiellonian University, Kraków, Poland
b HSBC Service Delivery (Polska) Sp. z o.o., Kraków, Poland

MPDATA \& diffusional growth

 with Michael Olesik (Jagiellonian) and Simon Unterstraßer (DLR)
what triggered the study

Morrison et al. 2018 (JAS)

FiG. 7. Dropsize distributions at various heightsz from the Lagrangina microphysical benchmart (black) and the bin model simulations (colored lines) for the parcel test with a bulk drop number mixing ratio of $50 \mathrm{mg}^{-1}$. Different colored lines illustrate results using different bin mass grid configurations and growth methods, as listed in Table 1 .
"... MPDG growth produces significant numerical diffusion and DSD broadening relative to the Lagrangian benchmark and all of the TH-MOM configurations"

more on MPDATA for condensational growth

Smolarkiewicz 1984 (sec. 5.1 "Divergent Flow Field")

"On the other hand when the velocity is strongly convergent, application of Eq. (38) to the problem of the evolution of the droplet size distribution due to the evaporation-condensation process improves the results (William Hall, personal communication)"

Tsang \& Korgaonkar 1987

"novel numerical scheme is devised for the solution of evaporation of aerosol clouds. This scheme combines the salient features of the Galerkin Finite Element Method and the positive definite method of Smolarkiewicz"

more on MPDATA for condensational growth

Tsang and Rao 1988

"Smolarkiewicz method provides a much narrower size distribution than upwind differencing and the sectional method, its prediction of mass concentration is worse than upwind differencing and the sectional method"

Williams \& Loyalka 1991

"Smolarkiewicz studied the problem of advection in fluid flows but his method applies directly to the problem of aerosol growth"

Kostoglou and Karabelas 1995
"A finite difference type of technique proposed by Smolarkiewicz (1983) for fluid flows is not compared with other methods here, even though it appears to reduce errors in size computations"
T. W. R. EAST

Figure 3. Modification of water-content distribution by condensation. The distribution at $M=1$ is assumed to be the same as in fair-weather cloud : the other curves show the distribution after water is condensed on to it rapidly. All are normalised to have equal area : the peak water content $w(r)_{\text {max }}$ actually increased 26 times from $M=1$ to $10 \mathrm{~g} / \mathrm{kg}$.

test case: setup \& analytic solution

initial spectrum (East \& Marshall 1954)
$n_{0}(r)=$ lognormal $(r) / r$

test case: setup \& analytic solution

initial spectrum (East \& Marshall 1954)

$$
n_{0}(r)=\text { lognormal }(r) / r
$$

drop growth (i.e., velocity field)

$$
d r / d t=\xi(S-1) / r \quad \rightsquigarrow \text { divergent }
$$

test case: setup \& analytic solution

initial spectrum (East \& Marshall 1954)

$n_{0}(r)=$ lognormal $(r) / r$
drop growth (i.e., velocity field)
$d r / d t=\xi(S-1) / r \quad \rightsquigarrow$ divergent
analytic solution (Rogers \& Yau)

$$
\begin{aligned}
& r^{\prime}(r, t)=\sqrt{r^{2}-2 \xi(S-1) t} \\
& n(r, t)=n_{0}\left(r^{\prime}\right) \cdot r / r^{\prime}
\end{aligned}
$$

test case: setup \& analytic solution

initial spectrum (East \& Marshall 1954)

$n_{0}(r)=$ lognormal $(r) / r$
drop growth (i.e., velocity field)

$$
d r / d t=\xi(S-1) / r \quad \rightsquigarrow \text { divergent }
$$

analytic solution (Rogers \& Yau)

$r^{\prime}(r, t)=\sqrt{r^{2}-2 \xi(S-1) t}$
$n(r, t)=n_{0}\left(r^{\prime}\right) \cdot r / r^{\prime}$

integration parameters

$\Delta t=0.5 s$
$r \in(1 . .25) \mu m$
$n x=64$ (linear, log-linear or r^{2}-linear)
$n t$: two-, four- \& tenfold increase in water content
test case: results with linear grid
x_id

test case: results with log-linear grid
x _In

test case: results with r^{2}-linear grid
 x_p2

". basic (+iterations): Smolarkiewicz 1983
". basic (+iterations): Smolarkiewicz 1983
" coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
"- basic (+iterations): Smolarkiewicz 1983
\#- coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
." divergent flow corrections: Smolarkiewicz 1984
:- basic (+iterations): Smolarkiewicz 1983
." coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
." divergent flow corrections: Smolarkiewicz 1984
" infinite-gauge variant: Smolarkiewicz 2006
:- basic (+iterations): Smolarkiewicz 1983
\% coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
.". divergent flow corrections: Smolarkiewicz 1984
" infinite-gauge variant: Smolarkiewicz 2006
:" flux-corrected transport: Smolarkiewicz and Grabowski 1990
:- basic (+iterations): Smolarkiewicz 1983
\%/ coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
." divergent flow corrections: Smolarkiewicz 1984
" infinite-gauge variant: Smolarkiewicz 2006
". flux-corrected transport: Smolarkiewicz and Grabowski 1990
. third-order terms: Smolarkiewicz and Margolin 1998
:- basic (+iterations): Smolarkiewicz 1983
". coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
." divergent flow corrections: Smolarkiewicz 1984
" infinite-gauge variant: Smolarkiewicz 2006
:" flux-corrected transport: Smolarkiewicz and Grabowski 1990
: third-order terms: Smolarkiewicz and Margolin 1998

- \quad...
"- basic (+iterations): Smolarkiewicz 1983
." coordinate transformation: Smolarkiewicz and Clark 1986, Smolarkiewicz and Margolin 1993
." divergent flow corrections: Smolarkiewicz 1984
" infinite-gauge variant: Smolarkiewicz 2006
:- flux-corrected transport: Smolarkiewicz and Grabowski 1990
. $=$ third-order terms: Smolarkiewicz and Margolin 1998
:" fully third-order variant: Waruszewski et al. 2018

demo

detour: new 2019 GMD journal policy

doi:10.5194/gmd-12-2215-2019

detour: new 2019 GMD journal policy

doi:10.5194/gmd-12-2215-2019

,,everything required to run the experiment must be provided, apart from the model itself"

detour: new 2019 GMD journal policy

doi:10.5194/gmd-12-2215-2019

,,everything required to run the experiment must be provided, apart from the model itself"
,,ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"

detour: new 2019 GMD journal policy

doi:10.5194/gmd-12-2215-2019

,,everything required to run the experiment must be provided, apart from the model itself"
,,ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
"All figures and tables must be scientifically reproducible from the scripts"

detour: new 2019 GMD journal policy

doi:10.5194/gmd-12-2215-2019

„everything required to run the experiment must be provided, apart from the model itself"
,,ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
„All figures and tables must be scientifically reproducible from the scripts"
„It is the opinion of the GMD editors that if the code is not ready, then neither is the manuscript"

doi:10.5194/gmd-12-2215-2019

„everything required to run the experiment must be provided, apart from the model itself"
„ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
„All figures and tables must be scientifically reproducible from the scripts"
„It is the opinion of the GMD editors that if the code is not ready, then neither is the manuscript"
„During the review process, the ease of model download, compilation, and running of test cases may be assessed"

github.com/atmos-cloud-sim-uj

Atmospheric Cloud Simulation Group @ Jagiellonian University

github.com/atmos-cloud-sim-uj/MPyDATA

MPyDATA

code quality B build passing coverage 19%

Examples:

- Smolarkiewicz 2006 Figs $3,4,10,11,12$:
- East 1957 Fig 3: 8 launch binder render nbviewer

8 binder

Starting repository: atmos-cloud-sim-uj/MPyDATA.git/master You can learn more about building your own Binder repositories in the Binder community documentation.

mybinder.org/...

こ. Jupyter East_1957_Fig3 (autosaved)

acknowledgements

" Ahmad Farhat (HSBC)
Michael Olesik (Jagiellonian)
.- Hanna Pawłowska \& libmpdata++ team (Univ. Warsaw)

- Piotr Smolarkiewicz (NCAR)
.- Poland's National Science Centre (ncn.gov.pl)
- Foundation for Polish Science (fnp.org.pl)
- Ahmad Farhat (HSBC)
- Michael Olesik (Jagiellonian)
- Hanna Pawłowska \& libmpdata++ team (Univ. Warsaw)
- Piotr Smolarkiewicz (NCAR)
". Poland's National Science Centre (ncn.gov.pl)
" Foundation for Polish Science (fnp.org.pl)

Thank you for your attention!

