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From Wikipedia, the free encyclopedia

Maurycy Pius Rudzki (b. 1862, d. 1916) was the first person to call

himself a professor of geophysics. [zi= 1=l = Sl i Sl e =i

he Jagiellonian University in Krakéw, and established the Institute of

His research specialty was elastic anisotropy,
as applied to wave propagation in the earth, and he established many of
the fundamental results in that arena. [1]
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“Principles of Meteorology” book (1917)

D* M. P. RUDZKI

PROFESOR UNIWERSYTETU JADIELLONSKIEGO,
DYREKTOR OBSERWATORYUM ASTRONOMICINEODO W KRAKOWIE,

ZASADY
METEOROLOGII

WARSZAWA.
SKLAD OLOWNY W KSIEGARNI E. WENDE | SPOLKA.

1917.
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. in the atmosphere, nuclei are needed for condensation ... the air contains a lot of
smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour
even when the air is not saturated yet ... everything we have said so far only applies to
to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a
single drop that falls but a whole plenty ... contrast between the sizes of drops, of
which clouds are made up, and the size of raindrops, is so great that the latter, of
course, can not come straight from the condensation, only from the merging of many
small ones droplets ... the drops are all different, one smaller, the other bigger, but
most often drops occur with weight ratios of 1,2,4,8 ... we thus conclude that droplets
most often combine with those of equal size ... we know from hydrodynamics that air
movement in between two balls running in parallel and flying together, is such that the
balls are attracted to each other ... we prefer to keep quiet about the impact of
electricity on the merging of droplets ...
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- rain drops precipitate
washing out aerosol

- rain drops evaporate
into aerosol particles
of potentially altered
size and/or composition
(collisions, chemistry)
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Pioneering warm-rain aerosol-cloud-interaction models:

Andrejczuk et al. 2010 Lebo & Seinfeld 2011 Shima et al. 2009

condensation: Lagrangian  condensation:  Eulerian condensation: Lagrangian
collisions: Eulerian collisions: Eulerian collisions: Lagrangian
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Pioneering warm-rain aerosol-cloud-interaction models:

Andrejczuk et al. 2010 Lebo & Seinfeld 2011 Shima et al. 2009

condensation: Lagrangian  condensation:  Eulerian condensation: Lagrangian
collisions: Eulerian collisions: Eulerian collisions: Lagrangian

Shima et al.: stochastic coalescence and random phase-space sampling
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particle-based p-physics: key concepts

Domain randomly populated with
" u-physics information carriers”

/' / (super particles / super droplets)

J/

|
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advantages over Eulerian approach: no
“categorisation” ; adding attributes
does not increase dimensionality

(ice, chemistry, charge, isotopic
composition, ...)

Particle-based cloud microphysics: rationale, state of the art and challenges 18/33




particle-based p-physics: coupling with the host model

Eulerian / PDE Lagrangian / ODE
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advection of heat
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particle-based p-physics: coupling with the host model

Eulerian / PDE Lagrangian / ODE
advection of heat particle transport by the flow
advection of moisture condensational growth

collisional growth
sedimentation

6t(pdr)+v-(\7pdr)=pdf P=
) ) particles € AV
Ot(pgf) + V - (Vpgb) = pgb 0= .
particles € AV
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advection of heat
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9¢(par) +V - (Vpar) = pat
de(pgf) + V - (Vpgh) = pgb

advection of trace gases

particle transport by the flow
condensational growth
collisional growth
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) particles € AV
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in-particle aqueous chemistry
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particle-based p-physics: coupling with the host model

Eulerian / PDE

Lagrangian / ODE

advection of heat
advection of moisture

9¢(par) +V - (Vpar) = pat
0:(paf) + V - (Vpdf) = pat

advection of trace gases

challenges:

particle transport by the flow
condensational growth
collisional growth
sedimentation

= s

) particles € AV

0= o
particles € AV

in-particle aqueous chemistry

= scalability (cost vs. number of particles),

= super-particles “conservation” (coalescence!)
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Monte Carlo coalescence scheme (Shima et al.)

= for all n super-droplets in a grid box of volume AV in timestep At
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= each representing ¢ real particles (aerosol/cloud/drizzle/rain)
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Monte Carlo coalescence scheme (Shima et al.)
= for all n super-droplets in a grid box of volume AV in timestep At
= each representing ¢ real particles (aerosol/cloud/drizzle/rain)

= the probability of coalescence of i-th and j-th super-droplets is:

Py = max(&i,&) - E(ri, 1) - m(ri+ )% - vi — vi| - &%

coalescence kernel
where r — drop radii, E(rj, r;) — collection efficiency, v — drop velocities
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= for all n super-droplets in a grid box of volume AV in timestep At

= each representing & real particles (aerosol/cloud/drizzle/rain)

«" the probability of coalescence of i-th and j-th super-droplets is:

Py = max(&i,&) - E(ri, 1) - m(ri+ )% - vi — vi| - &%

coalescence kernel
where r — drop radii, E(rj, r;) — collection efficiency, v — drop velocities

= coalescence takes place following the latter of the two (consistent) scenarios:

» a part of { real particles (defined by Pj;) coalesce every timestep

> all min(&;,&;) drops coalesce once in a number of t-steps (defined by Pj)
~ there's always a "bin" of the right size to store the collided particles

Particle-based cloud microphysics: rationale, state of the art and challenges 20/33



Monte Carlo coalescence scheme (Shima et al.)

= for all n super-droplets in a grid box of volume AV in timestep At

= each representing & real particles (aerosol/cloud/drizzle/rain)

«" the probability of coalescence of i-th and j-th super-droplets is:
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where r — drop radii, E(rj, r;) — collection efficiency, v — drop velocities

= coalescence takes place following the latter of the two (consistent) scenarios:

» a part of { real particles (defined by Pj;) coalesce every timestep

> all min(&;,&;) drops coalesce once in a number of t-steps (defined by Pj)
~ there's always a "bin" of the right size to store the collided particles

= collisions triggered by comparing a uniform random number with P;
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Monte Carlo coalescence scheme (Shima et al.)
for all n super-droplets in a grid box of volume AV in timestep At
each representing ¢ real particles (aerosol/cloud/drizzle/rain)

the probability of coalescence of i-th and j-th super-droplets is:
(n—1 .
Py = max(&,§) - E(ri ) - w(ri+ ) - lvi — vi| - A5 - 52/ 2]

coalescence kernel
where r — drop radii, E(rj, r;) — collection efficiency, v — drop velocities

coalescence takes place following the latter of the two (consistent) scenarios:

» a part of { real particles (defined by Pj;) coalesce every timestep
> all min(&;,&;) drops coalesce once in a number of t-steps (defined by Pj)
~ there's always a "bin" of the right size to store the collided particles

collisions triggered by comparing a uniform random number with P

[n/2] random non-overlapping (i,j) pairs examined instead of all (i,j) pairs
cost: O(n?) ~» O(n), probability upscaled by @/ [5]
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example simulation (2D, prescribed flow)

Geosci. Model Dev., 8, 1677-1707, 2015
https://doi.org/10.5194/gmd-8-1677-2015

© Author(s) 2015. This work is distributed under the Creative
Commons Affribution 3.0 License.

Model description paper | 09 Jun 2015

libcloudph++ 1.0: a single-moment bulk,
double-moment bulk, and particle-based
warm-rain microphysics library in C++

S. Arabas®1, A. Jaruga!, H. Pawlowska®?,

and W. W. Grabowski?

Lnstitute of Geophysics, Faculty of Physics, University of
Warsaw, Warsaw, Poland

2National Center for Atmospheric Research (NCAR),
Boulder, CO, USA
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example simulation (Arabas et al. 2015, GMD)
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example simulation (Arabas et al. 2015, GMD
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CReSS

highlights

= particle-based microphysics vs. praticle-based measurements

= new particle formation studies

references

= Arabas & Shima 2013 (JAS): “Large Eddy Simulations of Trade-Wind Cumuli using
Particle-Based Microphysics with Monte-Carlo Coalescence”

- Shima, Hasegawa & Kusano 2015 (EGU Vienna): “Preliminary numerical study on the
cumulus-stratus transition induced by the increase of formation rate of aerosols”
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(Arabas & Shima 2013, JAS)

Particle-based cloud microphysics: rationale, state of the art and challenges 25/33




UWLCM

- Hoppel-gap resolving aqueous chemistry
= GPU-resident microphysics in C++
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UWLCM

highlights

- Hoppel-gap resolving aqueous chemistry

= GPU-resident microphysics in C++

references

= Arabas, Jaruga, Pawlowska & Grabowski 2015 (GMD): “libcloudph++ 1.0:
single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics. .."

I.I

Jaruga & Pawlowska 2018 (GMD): “libcloudph++ 1.1: aqueous phase chemistry
extension of the Lagrangian cloud microphysics scheme”

I.I

Dziekan & Pawlowska 2017 (ACP): “Stochastic coalescence in Lagrangian cloud
microphysics”

Grabowski & Abade 2017 (JAS): “Broadening of cloud droplet spectra through eddy
hopping: Turbulent adiabatic parcel simulations”

Grabowski, Dziekan & Pawlowska 2018 (GMD): “Lagrangian condensation
microphysics with Twomey CCN activation”

BTN

Dziekan, Waruszewski & Pawlowska 2019 (GMD): “University of Warsaw Lagrangian
Cloud Model (UWLCM)...”
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https://www.youtube.com/watch?v=BEidkhpw-MA
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UWLCM: Hoppel-gap resolving particle-based p-physics
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Figure 6. The size distributions of dry radii for the base case (a) and case3 (b). The initial dry radius size distribution is marked in black, the
final dry radius size distribution from grid cells with re > 0.01 gkg‘l in green, and from grid cells withr; > 0.01 g kg‘l in red. See Tables 2
and 3 for a definition of simulation set-ups.
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challenges (~- opportunities)
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particle-based microphysics: recap/takeaways

= no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
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RO

ab-initio (washout-autoconversion-accretion+riming+... as one process)

"

favourable scaling (particle attributes vs. Eulerian curse of dimensionality)
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by-design non-negativity of the derived density/concentration fields

RO

ab-initio (washout-autoconversion-accretion+riming+... as one process)

« favourable scaling (particle attributes vs. Eulerian curse of dimensionality)

= lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)
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particle-based microphysics: recap/takeaways

= no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)
= by-design non-negativity of the derived density/concentration fields
= ab-initio (washout-+autoconversion+accretion-+riming+... as one process)
= favourable scaling (particle attributes vs. Eulerian curse of dimensionality)
= lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)
= hybrid supercomputing adaptable (GPU-resident particles)
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particle-based microphysics: challenges/opportunities

= aerosol budget (precipication/scavenging sinks vs. long-term LES)
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aerosol budget (precipication/scavenging sinks vs. long-term LES)
ensemble analysis (multiple realisations, probabilistic “thinking”)
(de)activation nonlinearities ~~ numerical/resolution challenges

Eulerian/Lagrangian dynamics consistency (resolved and subgrid)
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ensemble analysis (multiple realisations, probabilistic “thinking”)

(de)activation nonlinearities ~~ numerical/resolution challenges

«* Eulerian/Lagrangian dynamics consistency (resolved and subgrid)

= commensurable comparisons wrt bin/bulk: “aerosol water”,
cannot “switch off” aerosol processing, ripening, etc (ab-initio)
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aerosol budget (precipication/scavenging sinks vs. long-term LES)
ensemble analysis (multiple realisations, probabilistic “thinking”)

(de)activation nonlinearities ~~ numerical/resolution challenges

«* Eulerian/Lagrangian dynamics consistency (resolved and subgrid)

= commensurable comparisons wrt bin/bulk: “aerosol water”,
cannot “switch off” aerosol processing, ripening, etc (ab-initio)

= charge, isotopic ratio, ...
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news: BAMS super-droplet review (Grabowski et al. '19)

MODELING OF CLOUD
MICROPHYSICS

Can We Do Better?

WojciecH W. Grasowskl, HuGH MorrisoN, SHIN-ICHIRO SHIMA, GusTavo C. ABADE,
PioTr Dziekan, AaND Hanna Pawiowska

The Lagrangian particle-based approach is an emerging technique to model doud
microphysics and its coupling with dynamics, offering significant advantages over Eulerian
approaches typically used in cloud models.

doi:10.1175/BAMS-D-18-0005.1
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Merci!
Thank you!

funding acknowledgement:
Foundation for Polish Science / European Union
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