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... in the atmosphere, nuclei are needed for condensation ... the air contains a lot of
smoke, molecules of acids e.t.c. ... all these are hygroscopic bodies that attract vapour
even when the air is not saturated yet ... everything we have said so far only applies to
to lonely drops, meanwhile, as rightly pointed out by Smoluchowski, usually it is not a
single drop that falls but a whole plenty ... contrast between the sizes of drops, of
which clouds are made up, and the size of raindrops, is so great that the latter, of
course, can not come straight from the condensation, only from the merging of many
small ones droplets ... the drops are all different, one smaller, the other bigger, but
most often drops occur with weight ratios of 1,2,4,8 ... we thus conclude that droplets
most often combine with those of equal size ... we know from hydrodynamics that air
movement in between two balls running in parallel and flying together, is such that the
balls are attracted to each other ... we prefer to keep quiet about the impact of
electricity on the merging of droplets ...
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Monte Carlo coalescence scheme (Shima et al.)

Particle-based cloud microphysics: rationale, state of the art and challenges 20/33

for all n super-droplets in a grid box of volume ∆V in timestep ∆t

each representing ξ real particles (aerosol/cloud/drizzle/rain)

the probability of coalescence of i-th and j-th super-droplets is:

Pij = max(ξi , ξj) · E (ri , rj) · π(ri + rj)2 · |vi − vj |︸ ︷︷ ︸
coalescence kernel

· ∆t
∆V

· n·(n−1)2 /
[
n
2

]

where r – drop radii, E (ri , rj) – collection efficiency, v – drop velocities

coalescence takes place following the latter of the two (consistent) scenarios:
a part of ξ real particles (defined by Pij) coalesce every timestep
all min(ξi ,ξj) drops coalesce once in a number of t-steps (defined by Pij)
 there’s always a ”bin” of the right size to store the collided particles

collisions triggered by comparing a uniform random number with Pij

[n/2] random non-overlapping (i,j) pairs examined instead of all (i,j) pairs
cost: O

(
n2
)
 O

(
n
)
, probability upscaled by n·(n−1)2 /

[
n
2

]
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Figure 9: Plots of dry and wet size spectra for ten location within the simulation domain. The locations
and their labels (a–j) are overlaid on plots in Figure 8. The vertical bars at 0.5 µm and 25 µm indicate the
range of particle wet radii which is associated with cloud droplets. See section 5.4 for discussion.
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recent particle-based µ-physics software developments
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HIGRAD/LCM from LANL/Leeds,

EULAG-LCM (http://www.mmm.ucar.edu/eulag/) from NCAR/DLR,

PALM-LES (http://palm.muk.uni-hannover.de/) from Univ. Hannover,

CReSS (http://www.rain.hyarc.nagoya-u.ac.jp/) from Univ. Nagoya,

UCLA-LES (http://github.com/uclales) from UCLA/MPI-M,

Pencil-Code (http://pencil-code.nordita.org) from Nordita/UC,

SCALE (http://scale.aics.riken.jp/) from RIKEN,

ICON/McSnow (http://gitlab.com/sbrdar/mcsnow) from DWD,

ASAM (http://asam.tropos.de/) from TROPOS,

UWLCM (http://github.com/igfuw/UWLCM) from Univ. Warsaw.

http://www.mmm.ucar.edu/eulag/
http://palm.muk.uni-hannover.de/
http://www.rain.hyarc.nagoya-u.ac.jp/
http://github.com/uclales
http://pencil-code.nordita.org
http://scale.aics.riken.jp/
http://gitlab.com/sbrdar/mcsnow
http://asam.tropos.de/
http://github.com/igfuw/UWLCM
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highlights

particle-based microphysics vs. praticle-based measurements
new particle formation studies

references
Arabas & Shima 2013 (JAS): “Large Eddy Simulations of Trade-Wind Cumuli using
Particle-Based Microphysics with Monte-Carlo Coalescence”

Shima, Hasegawa & Kusano 2015 (EGU Vienna): “Preliminary numerical study on the
cumulus-stratus transition induced by the increase of formation rate of aerosols”
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CReSS - RICO 24h LES of cumulus cloud field

Particle-based cloud microphysics: rationale, state of the art and challenges 25/33

0.4

0.6

0.8

1.0

1.2

h
e

ig
h

t 
[m

]

0.4

0.6

0.8

1.0

1.2

h
e

ig
h

t 
[m

]

0.4

0.6

0.8

1.0

1.2

-1 0 1 2

h
e

ig
h

t 
[m

]

w [m/s]

-1 0 1

S = RH - 1 [%]

20 60 100

CDNC [cm-3]

5 10 15 20

reff [µm]

0 0.5 1

LWC [g/m
3
]

0.6 0.8 1

k [1]

0 2 4 6

σr [µm]

sdm-middle-8

sdm-middle-32

sdm-middle-128

(Arabas & Shima 2013, JAS)



UWLCM

Particle-based cloud microphysics: rationale, state of the art and challenges 26/33

highlights

Hoppel-gap resolving aqueous chemistry

GPU-resident microphysics in C++

references

Arabas, Jaruga, Pawlowska & Grabowski 2015 (GMD): “libcloudph++ 1.0:
single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics. . . ”

Jaruga & Pawlowska 2018 (GMD): “libcloudph++ 1.1: aqueous phase chemistry
extension of the Lagrangian cloud microphysics scheme”

Dziekan & Pawlowska 2017 (ACP): “Stochastic coalescence in Lagrangian cloud
microphysics”

Grabowski & Abade 2017 (JAS): “Broadening of cloud droplet spectra through eddy
hopping: Turbulent adiabatic parcel simulations”

Grabowski, Dziekan & Pawlowska 2018 (GMD): “Lagrangian condensation
microphysics with Twomey CCN activation”

Dziekan, Waruszewski & Pawlowska 2019 (GMD): “University of Warsaw Lagrangian
Cloud Model (UWLCM)...”
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UWLCM - DYCOMS example
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https://www.youtube.com/watch?v=BEidkhpw-MA

https://www.youtube.com/watch?v=BEidkhpw-MA


UWLCM: Hoppel-gap resolving particle-based µ-physics
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Jaruga and Pawlowska 2018 (doi: 10.5194/gmd-11-3623-2018)
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challenges ( opportunities)



particle-based microphysics: recap/takeaways
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no numerical diffusion in radius space (also for coalesc. if Monte-Carlo)

by-design non-negativity of the derived density/concentration fields

ab-initio (washout+autoconversion+accretion+riming+... as one process)

favourable scaling (particle attributes vs. Eulerian curse of dimensionality)

lifetime tracing of aerosol particles (coalescence: props:yes; identity:no)

hybrid supercomputing adaptable (GPU-resident particles)
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aerosol budget (precipication/scavenging sinks vs. long-term LES)

ensemble analysis (multiple realisations, probabilistic “thinking”)

(de)activation nonlinearities  numerical/resolution challenges

Eulerian/Lagrangian dynamics consistency (resolved and subgrid)

commensurable comparisons wrt bin/bulk: “aerosol water”,
cannot “switch off” aerosol processing, ripening, etc (ab-initio)

charge, isotopic ratio, ...
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news: BAMS super-droplet review (Grabowski et al. ’19)
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doi:10.1175/BAMS-D-18-0005.1

https://doi.org/10.1175/BAMS-D-18-0005.1
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Merci!
Thank you!
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