On numerical modelling of clouds and precipitation

Sylwester Arabas¹ Piotr Bartman¹ Michael Olesik²

1: Institute of Computer Science and Computational Mathematics 2: Marian Smoluchowski Institute of Physics

2nd Kraków Interdisciplinary Science Seminar (KISS 2020), January 2020

background image: vitsly.ru / Hokusai

 aerosol particles of natural and anthropogenic origin act as condensation nuclei

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets
- aqueous chemical reactions irreversibly modify the drop composition

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets
- aqueous chemical reactions irreversibly modify the drop composition
- rain drops precipitate washing out aerosol

- aerosol particles of natural and anthropogenic origin act as condensation nuclei
- cloud droplets grow by water vapour condensation
- rain drops form through collisions of cloud droplets
- aqueous chemical reactions irreversibly modify the drop composition
- rain drops precipitate washing out aerosol
- rain drops evaporate into aerosol particles of potentially altered size and/or composition (collisions, chemistry)

Cloud evolution: as seen from space

NASA/MODIS (27 Jan 2003 – Bay of Biscay; 17 Apr 2010 – off the coast of Peru) http://visibleearth.nasa.gov/view.php?id=64992 http://earthobservatory.nasa.gov/IOTD/view.php?id=43795

dispersed phase

dispersed phase

dispersed phase

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- location
- wet radius

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- Iocation
- wet radius
- dry radius

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

- Iocation
- ► wet radius
- dry radius
- multiplicity

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

- Iocation
- wet radius
- dry radius
- multiplicity

. . .

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

- Iocation
- wet radius
- dry radius
- multiplicity

r ... vantages over F

advantages over Eulerian approach: no "categorisation"

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

- Iocation
- wet radius
- dry radius
- multiplicity

advantages over Eulerian approach: no "categorisation"; adding attributes does not increase dimensionality

Domain randomly populated with " μ -physics information carriers" (super particles / super droplets)

carrier attributes:

- Iocation
- wet radius
- dry radius
- multiplicity

▶ ...

advantages over Eulerian approach: no "categorisation"; adding attributes does not increase dimensionality (ice, chemistry, charge, isotopic composition, ...)

Eulerian / PDE	Lagrangian / ODE

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation
$\partial_t(\rho_d r) + \nabla \cdot (\vec{v}\rho_d r) = \rho_d \dot{r}$ $\partial_t(\rho_d \theta) + \nabla \cdot (\vec{v}\rho_d \theta) = \rho_d \dot{\theta}$	$\dot{r} = \sum_{\substack{\text{particles } \in \Delta V \\ \dot{\theta} = \sum_{\substack{\text{particles } \in \Delta V \\ \text{particles } \in \Delta V}} \dots$

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation
$\partial_t(\rho_d r) + \nabla \cdot (\vec{v}\rho_d r) = \rho_d \dot{r}$ $\partial_t(\rho_d \theta) + \nabla \cdot (\vec{v}\rho_d \theta) = \rho_d \dot{\theta}$	$\dot{r} = \sum_{\substack{\text{particles} \in \Delta V \\ \dot{ heta} = \sum_{\substack{\text{particles} \in \Delta V \\ \text{particles} \in \Delta V}} \dots$
advection of trace gases	in-particle aqueous chemistry

Eulerian / PDE	Lagrangian / ODE
advection of heat	particle transport by the flow
advection of moisture	condensational growth
	collisional growth
	sedimentation
$\partial_t(\rho_d r) + \nabla \cdot (\vec{v}\rho_d r) = \rho_d \dot{r}$ $\partial_t(\rho_d \theta) + \nabla \cdot (\vec{v}\rho_d \theta) = \rho_d \dot{\theta}$	$\dot{r} = \sum_{\substack{\text{particles } \in \Delta V \\ \dot{ heta} = \sum_{\substack{\text{particles } \in \Delta V \\ \text{particles } \in \Delta V}} \dots$
advection of trace gases	in-particle aqueous chemistry
challenges	

- scalability (cost vs. number of particles),
 - super-particles "conservation" (coalescence!)

5:2

5.2

particle size spectra

xxxx000000000

Lagrangian μ -physics in 3D: simulations vs. aircraft data

Lagrangian μ -physics in 3D: simulations vs. aircraft data

Arabas & Shima 2013, JAS

Lagrangian μ -physics in 3D: simulations vs. aircraft data

Arabas & Shima 2013, JAS

Arabas, Pawlowska, Grabowski 2009, GRL

a detour...

Morin et al. 2012

doi:10.1126/science.1218263

"the inability to reproduce many published computational results or to perform credible peer review in the absence of program source code has contributed to a perceived "credibility crisis" for research computation"

Morin et al. 2012

doi: 10.1126/science. 1218263

"the inability to reproduce many published computational results or to perform credible peer review in the absence of program source code has contributed to a perceived "credibility crisis" for research computation"

Ince et al. 2012

doi:10.1038/nature10836

"anything less than the release of source programs is intolerable for results that depend on computation"

Morin et al. 2012

doi: 10.1126/science. 1218263

"the inability to reproduce many published computational results or to perform credible peer review in the absence of program source code has contributed to a perceived "credibility crisis" for research computation"

Ince et al. 2012

doi:10.1038/nature10836

"anything less than the release of source programs is intolerable for results that depend on computation"

Easterbrook 2014

doi:10.1038/ngeo2283

"Poor code quality is endemic..."

"Significant improvements in the sharing of software tools and in making computationally-based research reproducible require much more than merely making the code available"

detour: new 2019 GMD journal policy

doi:10.5194/gmd-12-2215-2019

doi:10.5194/gmd-12-2215-2019

, everything required to run the experiment must be provided, apart from the model itself"

doi:10.5194/gmd-12-2215-2019

- , everything required to run the experiment must be provided, apart from the model itself"
- "ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
doi: 10.5194/gmd - 12 - 2215 - 2019

- , everything required to run the experiment must be provided, apart from the model itself"
- "ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
- ▶ "All figures and tables must be scientifically reproducible from the scripts"

doi:10.5194/gmd-12-2215-2019

- , everything required to run the experiment must be provided, apart from the model itself"
- "ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
- ▶ "All figures and tables must be scientifically reproducible from the scripts"
- "It is the opinion of the GMD editors that if the code is not ready, then neither is the manuscript"

doi:10.5194/gmd-12-2215-2019

- , everything required to run the experiment must be provided, apart from the model itself"
- "ensure that there is no manual processing of the data: models are run by a script, and all pre- and post-processing is scripted"
- ▶ "All figures and tables must be scientifically reproducible from the scripts"
- "It is the opinion of the GMD editors that if the code is not ready, then neither is the manuscript"
- "During the review process, the ease of model download, compilation, and running of test cases may be assessed"

open-source software developed at UJ with FNP funding

Atmospheric Cloud Simulation Group @ Jagiellonian Universit	ty
E Repositories 2 🗇 Packages A People 3 🖾 Teams III Projects 🔥 Settings Find a repository	Customize pins
PySDM Forked from piothartmanPySDM Pythonic particle-based (super-droplet) cloud microphysics modelling with	Top languages • Jupyter Notebook
Jupyter examples monte-cato-simulation gpu-computing physics-simulation numba particle-system pythvan Jupyter Notebook	People 3>
MPyDATA Forked from plotbartmanMPyDATA WinDba-accelerated Pythonic implementation of MPDATA with Jupyter examples	Invite someone
numba numerical-integration advection pde-solver ●Jupyter Notebook	

particle-based cloud modelling workshop at UJ (April '19)

44 researchers from 28 institutions from 11 countries

http://www.ii.uj.edu.pl/~arabas/workshop_2019/

Thank you!

European Union European Regional Development Fund

