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Lagrangian approaches: moving-sectional, particle-based, probabilistic

a
Howell 1949 (J. Atmos. Sci.): ”The growth of cloud drops in uniformly cooled air”

b
Lange 1978 (J. Appl. Meteorol.): ”ADPIC – A Three-Dimensional Particle-in-Cell Model for the Dispersal of Atmospheric Pollutants ...”

c
Zannetti 1983 (Appl. Math. Model.): ”New Monte Carlo scheme for simulating Lagrangian particle diffusion with wind shear effects”

d
Jacobson 2005 (Cambridge Univ. Press): ”Fundamentals of Atmospheric Modelling”

e
Shima et al. 2009 (QJRMS): ”The super-droplet method for the numerical simulation of clouds and precipitation”
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immersion freezing and other ice crystal formation pathways in clouds

Kanji et al. 2017, graphics F. Mahrt, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
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immersion freezing: bacteria and the Olympics

The unstable ice nucleation properties of Snomax®

bacterial particles

Michael Polen1, Emily Lawlis1, and Ryan C. Sullivan1

1Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract Snomax® is often used as a surrogate for biological ice nucleating particles (INPs) and has recently

been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion

freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025251

Key Points:

• Very ice active Snomax protein

aggregates are fragile and their ice

nucleation ability decreases over

months of freezer storage

• Partitioning of ice active protein

aggregates into the immersion oil

reduces the droplet’s measured

freezing temperature

• Caution is warranted in the use of
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Vonnegut 1948 (J. Colloid Sci.)

Vali 2014 (ACP)

”Interpretations of the experimental results
face considerable difficulties ... two separate
ways of interpreting the same observations;
one assigned primacy to time the other
emphasized the temperature-dependent
impacts of the impurities ... dichotomy –
the stochastic and singular models”

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)

https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl


8/18

Marshall et al. 1961 (Nubila 4(1))

http://cma.entecra.it/Astro2_sito/doc/Nubila_1_1961.pdf
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)

Poisson counting process with rate r :

P
∗
(k events in time t) =

(rt)k exp(−rt)

k!

P(one or more events in time t) = 1 − P
∗
(k = 0, t)

ln(1− P) = −rt
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)

Poisson counting process with rate r :
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∗
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(rt)k exp(−rt)

k!
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∗
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freezing temperature Tfz as a super-particle attribute

P(A,Tfz) = 1− exp(−A · ns(Tfz))

spectrum of Tfz even for monodisperse A
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freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)
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– “singular” particle-based model is capable of representing polydisperse INP
– depicted limitations stemming from monodisperse INP assumption
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particle-based freezing: singular (Shima et al.) / time-dependent (this work)

singular: INAS Tfz as attribute; initialisation by random sampling from P(Tfz,A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz (t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T (t)))
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)

Poisson counting process with rate r :

P
∗
(k events in time t) =

(rt)k exp(−rt)

k!

P(one or more events in time t) = 1 − P
∗
(k = 0, t)

ln(1− P) = −rt

introducing Jhet(T ), T (t) and INP surface A:

ln (1−P(A, t)) = −A

t∫

0

Jhet(T (t ′)) dt ′

︸ ︷︷ ︸

I (T )

INAS: I (T ) = ns(T ) = exp(a · (T − T0◦C ) + b)

experimental ns(T ) fits: e.g., Niemand et al. 2012
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ABIFM Jhet/c (m=28.14 c=-2.92)
INAS: dns(T)/dT= a ns(T) (dust)
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but the singular ansatz limitation of sampling Tfz at t=0 remains
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particle-based µ-physics + prescribed-flow test (aka KiD-2D)a,b,c,d,e

Lagrangian component (PySDM)

Eulerian component (PyMPDATA)

aconcept: Gedzelman&Arnold ’93

bstratiform: Morrison&Grabowski ’07

cparticle-based: Arabas et al. ’15

dKiD-2D: github.com/BShipway/KiD

ehere: SHEBA case (Fridlind et al. ’12)

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)

https://github.com/BShipway/KiD
https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl
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particle-based µ-physics + prescribed-flow test

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers
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◮ range of cooling rates in simple flow (far from c ∼ 1 K/min for AIDA as in Niemand et al. 2012)
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◮ singular vs. time-dependent markedly different (consistent with box model for c ≪ 1K/min)

◮ CPU time trade off: time dependent ca. 3-4 times costlier
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◮ ”core physical process that drives the cloud-phase feedback is the
transition to clouds with more liquid water and less ice as the
isotherms shift upwards in a warmer world”

◮ ”models need to improve their representation of ice-related
microphysical processes; in particular, they need to include a direct
link to aerosol type, specifically INPs”

◮ ”must also represent the INP removal processes, which in turn
depend on a correct representation of the microphysics”
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