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» aerosol particles of natural
and anthropogenic origin
act as condensation/crystallisation nuclei

> droplets and ice particles grow through
vapour condensation and deposition...

»> .. and collisions-coalescence/aggregation

» aqueous chemical reactions alter
droplet composition

» water and ice precipitates
(possibly breaking up into smaller particles)
washing out sub-cloud aerosol

» particles evaporating before reaching surface
(with potentially altered size/composition)
contribute to ambient aerosol

two-way interactions:
- aerosol characteristics influence cloud microstructure
- cloud processes influence aerosol size and composition

background image: vitsly.ru / Hokusai

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)



vitsly.ru
https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

super-particles as a probabilistic alternative to bulk or bin p-physics
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Key Points:

« Microphysics is an important
component of weather and climate
models, but its representation in
current models is highly uncertain

Journal of Advances in
Modeling Earth Systems

Confronting the Challenge of Modeling Cloud
and Precipitation Microphysics

Hugh Morrison" @, Marcus van Lier-Walqui® @, Ann M. Fridlind® @,

Wojciech W. Grabowski' @, Jerry Y. Harrington‘, Corinna Hoose® @, Alexei Korolev® @,
Matthew R. Kumjian‘ @, Jason A. Milbrandt’, Hanna Pawlowska® ®, Derek J. Posselt’,
Olivier P. Prat'®, Karly J. Reimel?, Shin-Ichiro Shima' (), Bastiaan van Diedenhoven? (),
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Figure 3. Representation of cloud and precipitation particle distributions in the three main types of microphysics
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Predicting the morphology of ice particles in deep convection using the super-droplet method
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immersion freezing and other ice crystal formation pathways in clouds
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immersion freezing: bacteria and the Olympics

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025251

Key Points:

« Very ice active Snomax protein
aggregates are fragile and their ice
nucleation ability decreases over
months of freezer storage

« Partitioning of ice active protein
aggregates into the immersion oil
reduces the droplet's measured
freezing temperature

The unstable ice nucleation properties of Snomax®
bacterial particles
Michael Polen, Emily Lawlis', and Ryan C. Sullivan'

'Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract snomax®is often used asa surrogate for biological ice nucleating particles (INPs) and has recently
been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion
freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability
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Marshall et al. 1961 (Nubila 4(1))

Heterogeneous Nucleations

is a Stochastic Process
by
J.S. MARSHALL

MeGill University, Montreal, Canad.

Presented at the International Congress on the Physics of Clouds (Hailstorms)
at Verona 9-13 August 1960,

http://cma.entecra.it/Astro2_sito/doc/Nubila_1_1961.pdf
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(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)

Poisson counting process with rate r:

In(l—P)=—rt

introducing Jhet(T), T(t) and INP surface A:

In(1—P(A 1)) = — /Jhet(T(t’)) dt
0

| S —
I(T)
INAS:

I(T) = ns(T) = exp(a- (T — Toec) + b)
experimental ns(T) fits: e.g., Niemand et al. 2012

DA™ g/15



particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Ty, as attribute; initialisation by random sampling from P(Tg,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)
time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))
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singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))

ogg=exp(0.25)

Jppp—

®© o o =~
& o ® ©

frozen fraction

=]
N

=}
=}

250 245 240 235
temperature [K]

N
w
I3

—— Monte-Carlo: singular/INAS

—=— Monte-Carlo: time-dependent/ABIFM
—~~—- singular CDF for 0.1x median surface
—=- singular CDF for 1x median surface
==- singular CDF for 10x median surface

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))

og=exp(0.5)

Jppp—

®© o o =~
& o ® ©

frozen fraction

=]
N

=}
=}

250 245 240 235
temperature [K]

N
w
I3

—— Monte-Carlo: singular/INAS

—=— Monte-Carlo: time-dependent/ABIFM
—~~—- singular CDF for 0.1x median surface
—=- singular CDF for 1x median surface
==- singular CDF for 10x median surface

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))

ag=exp(1)

®© o o =~
& o ® ©

frozen fraction

=]
N

=}
=}

250 245 240 235
temperature [K]

N
w
I3

—— Monte-Carlo: singular/INAS

—=— Monte-Carlo: time-dependent/ABIFM
—~~—- singular CDF for 0.1x median surface
—=- singular CDF for 1x median surface
==- singular CDF for 10x median surface

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))

og=exp(1.5)

®© o o =~
& o ® ©

frozen fraction

=]
N

=}
=}

250 245 240 235
temperature [K]

N
w
I3

—— Monte-Carlo: singular/INAS

—=— Monte-Carlo: time-dependent/ABIFM
—~~—- singular CDF for 0.1x median surface
—=- singular CDF for 1x median surface
==- singular CDF for 10x median surface

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))

og=exp(2)

®© o o =~
& o ® ©

frozen fraction

=]
N

=}
=}

250 245 240 235
temperature [K]

N
w
I3

—— Monte-Carlo: singular/INAS

—=— Monte-Carlo: time-dependent/ABIFM
—~~—- singular CDF for 0.1x median surface
—=- singular CDF for 1x median surface
==- singular CDF for 10x median surface

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))
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singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T(t)))
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singular: INAS Ty, as attribute; initialisation by random sampling from P(T¢,, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)
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(A is not an attribute, initialisation only); freezing if T(t) < Tg(t = 0)
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(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)

Poisson counting process with rate r:

In(l—P)=—rt

introducing Jhet(T), T(t) and INP surface A:

In(1—P(A 1)) = — /Jhet(T(t’)) dt
0

| S —
I(T)
INAS:

I(T) = ns(T) = exp(a- (T — Toec) + b)
experimental ns(T) fits: e.g., Niemand et al. 2012
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)
(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poisson counting process with rate r:

for a constant cooling rate ¢ = dT /dt:

A To+ct , ,
In(1 — P(A, t)) = —— / Ihet (T)dT = —A - I(T)
cJTy

dng(T)

1
e = () = — (D)
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introducing Jhet(T), T(t) and INP surface A
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation) for a constant cooling rate ¢ = dT /dt:

(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61) In(1 — P(A, £)) = _A /Tﬂ+“ Ihee(TYAT! = —A- I(T)
cJry

Poisson counting process with rate r: dng(T)

dT

1
=a:ns(T) = ——hee(T)

experimental fits: INAS ns (Niemand et al. "12)
ABIFM Uyt (Knopf & Alpert '13)

In(1—P)=—rt 100
introducing Jhet(T), T(t) and INP surface A: fmu
t § 10°
In(1—P(A, t)) = —A[ he(T(t))) dt’ $ v
0 é 105 = ABIFM Jhee/c (lllite)
N e’ £ —— ABIFM Jhe/c (M=28.14 c=-2.92)
I(T) = x INAS: —dny(T)/dT = —a-ny(T) (dust)

255.0 252.5 250.0 247.5 245.0 242.5 240.0 237.5 235.0

INAS: I(T) = ns(T) = exp(a . (T — TOOC) + b) temperature [K]
experimental ng(T) fits: e.g., Niemand et al. 2012




Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation) for a constant cooling rate ¢ = dT /dt:

(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61) In(1 — P(A, £)) = _A /Tﬂ+“ Ihee(TYAT! = —A- I(T)
cJry

Poisson counting process with rate r: dng(T)

dT

1
=a:ns(T) = ——hee(T)

experimental fits: INAS ns (Niemand et al. "12)
ABIFM Uyt (Knopf & Alpert '13)

In(l — P) = —rt 10

introducing Jhet(T), T(t) and INP surface A: o

§ 10°
E
g

In (1 PA t) A/het dt’ ¥
n

—O — é: 10° —— ABIFM Jped/c (lllite)
= —— ABIFM Jher/c (M=28.14 c=-2.92)
1) = = INAS: —dn(T)/dT = —a-ns(T) (dust)

255.0 252.5 250.0 247.5 245.0 242.5 240.0 237.5 235.0
temperature [K]
INAS:  I(T)=ng(T) =exp(a- (T — Toec) + b) _
cf. Vali & Stansbury '66; modified singular model (Vali '94, Murray et al. '11)
but the singular ansatz limitation of sampling T, at t=0 remains

experimental ng(T) fits: e.g., Niemand et al. 2012
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

Is it a problem?

for a constant cooling rate ¢ = dT /dt:
A To+ct , ,
In(1 — P(A, t)) = —7/ Jhet(T)dT" = —A - I(T)
cJTy

dns(T)
dT

1
=a:ns(T) = ——Jhee(T)

experimental fits: INAS ns (Niemand et al. "12)
ABIFM Uyt (Knopf & Alpert '13)
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cf. Vali & Stansbury '66; modified singular model (Vali '94, Murray et al. '11)

but the singular ansatz limitation of sampling T, at t=0 remains
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particle-based p-physics + prescribed-flow test (aka KiD-2D)*><def

Lagrangian component (PySDM)
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sstratiform: Morrison & Grabowski'07
c<ice phase: e.g., Yangetal.'15
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particle-based p-physics + prescribed-flow test

Time: 30 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 60 s (spin-up till 600.0 s)
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spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 90 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 120 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 150 s (spin-up fill 600.0 s)
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spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 180 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 210 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 240 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 270 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 300 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 330 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 360 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 390 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 420 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 450 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 480 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based p-physics + prescribed-flow test

Time: 510 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 540 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 570 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 600 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 630 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 660 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 690 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 720 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 750 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 780 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 810 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 840 s (spin-up fill 600.0 s)

— 10 @ —250Q
© €
5 € —200 8
2 9]
= -~ 150 £
2 E 2
5 100g
S =
~057 0 ©

16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

particle-based p-physics + prescribed-flow test

Time: 870 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 900 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 930 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 960 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 990 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1020 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1050 s (spin-up till 600.0 s)

— 10 @ —250Q
© €
5 € —200 8
2 9]
= -~ 150 £
2 E 2
5 100g
S =
~057 0 ©

16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1080 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1110 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1140 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1170 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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particle-based p-physics + prescribed-flow test

Time: 1200 s (spin-up till 600.0 s)

— 10 @ —250Q
© €
5 € —200 8
2 9]
= -~ 150 £
2 E 2
5 100g
S =
~057 0 ©

16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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testing three flow regimes and two immersion freezing representations

Wmax = 1/3 m/s

Wmax =~ 1 m/s

Wmax =~ 3 m/s
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testing three flow regimes and two immersion freezing representations

@ 500 500
~
£ 400¢ 1400
I
- | -1
Q 0v5§
3 09 5
£ =
= 085 T
08
v
~
€
il 1
4 0952
p g
g 09 5
2 085
z
08
@
~
£
o
Q2
%
£
2

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl) o & £ DAC 13/15


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

testing three flow regimes and two immersion freezing representations
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testing three flow regimes and two immersion freezing representations
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testing three flow regimes and two immersion freezing representations

occurence count (3-bin moving average)
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» range of cooling rates in simple flow (far from ¢ ~ 1 K/min for AIDA as in Niemand et al. 2012)
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testing three flow regimes and two immersion freezing representations

occurence count (3-bin moving average)
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» range of cooling rates in simple flow (far from ¢ ~ 1 K/min for AIDA as in Niemand et al. 2012)

» singular vs. time-dependent markedly different (consistent with box model for ¢ < 1K /min)
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testing three flow regimes and two immersion freezing representations

occurence count (3-bin moving average)
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» range of cooling rates in simple flow (far from ¢ ~ 1 K/min for AIDA as in Niemand et al. 2012)

» singular vs. time-dependent markedly different (consistent with box model for ¢ < 1K /min)

» CPU time trade off: time dependent ca. 3-4 times costlier
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Time: 1200 s (spin-up till 600.0 s)
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key messages:
— emergence of comprehensive mixed-phase particle-based aerosol/cloud p-physics models
— cooling rate embedded in INAS fits ~~ limited robustness to different flow regimes
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Time: 1200 s (spin-up till 600.0 s)
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key messages:
— emergence of comprehensive mixed-phase particle-based aerosol/cloud p-physics models
— cooling rate embedded in INAS fits ~~ limited robustness to different flow regimes
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Time: 1200 s (spin-up till 600.0 s)
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key messages:
— emergence of comprehensive mixed-phase particle-based aerosol/cloud p-physics models
— cooling rate embedded in INAS fits ~~ limited robustness to different flow regimes

N ASR  DOE ASR grant no. project hosted at:

7S DEscooa1034 I ILLINOIS

presented by Sylwester Arabas (atmos.illinois.edu & atmos.ii.uj.edu.pl)

n; [1/L] (cells)


https://atmos.illinois.edu
https://atmos.ii.uj.edu.pl

Time: 1200 s (spin-up till 600.0 s)
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key messages:
— emergence of comprehensive mixed-phase particle-based aerosol/cloud p-physics models
— cooling rate embedded in INAS fits ~~ limited robustness to different flow regimes
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Time: 1200 s (spin-up till 600.0 s)
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key messages:
— emergence of comprehensive mixed-phase particle-based aerosol/cloud p-physics models
— cooling rate embedded in INAS fits ~~ limited robustness to different flow regimes
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