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Vonnegut 1948 (J. Colloid Sci.)

Vali 2014 (ACP)

”Interpretations of the experimental results

face considerable difficulties ... two separate

ways of interpreting the same observations;

one assigned primacy to time the other

emphasized the temperature-dependent

impacts of the impurities ... dichotomy –

the stochastic and singular models”
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)
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experimental ns(T ) fits: e.g., Niemand et al. 2012
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particle-based Monte-Carlo freezing: singular vs. time-dependent

singular1: INAS Tfz as attribute; initialisation by random sampling from P(Tfz,A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz (t = 0)

time-dependent2: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(Jhet(T (t)))
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(A is not an attribute, initialisation only); freezing if T (t) < Tfz (t = 0)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)

Poisson counting process with rate r :

P
∗
(k events in time t) =

(rt)k exp(−rt)

k!

P(one or more events in time t) = 1 − P
∗
(k = 0, t)

ln(1− P) = −rt

introducing Jhet(T ), T (t) and INP surface A:

ln (1−P(A, t)) = −A

t∫

0

Jhet(T (t ′)) dt ′

︸ ︷︷ ︸

I (T )

INAS: I (T ) = ns(T ) = exp(a · (T − T0◦C ) + b)

experimental ns(T ) fits: e.g., Niemand et al. 2012

235.0237.5240.0242.5245.0247.5250.0252.5255.0
temperature [K]

105

107

109

1011

1013

J h
et

(T
)/c

=
dn

s(T
)/d

T 
 [K

1 m
2 ]

c=2.5aK/min
c=0.5aK/min
c=0.1aK/min
c=2.5aK/minc=0.5aK/minc=0.1aK/min

ABIFM Jhet/c (Illite)
ABIFM Jhet/c (m=28.14 c=-2.92)
INAS: dns(T)/dT= a ns(T) (dust)
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cf. Vali & Stansbury ’66; modified singular model (Vali ’94, Murray et al. ’11)
but the singular ansatz limitation of sampling Tfz at t=0 remains
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cf. Vali & Stansbury ’66; modified singular model (Vali ’94, Murray et al. ’11)
but the singular ansatz limitation of sampling Tfz at t=0 remains
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particle-based µ-physics + prescribed-flow test (aka KiD-2D)a,b,c,d,e,f

Lagrangian component (PySDM)

Eulerian component (PyMPDATA)

aconcept: Gedzelman&Arnold ’93

bstratiform: Morrison&Grabowski ’07

cice phase: e.g., Yang et al. ’15

dparticle-based: e.g., Arabas et al. ’15

eKiD-2D: github.com/BShipway/KiD

fhere: SHEBA case (Fridlind et al. ’12)
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testing three flow regimes and two immersion freezing representations
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◮ range of cooling rates in simple flow (far from c ∼ 1 K/min for AIDA as in Niemand et al. 2012)
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◮ range of cooling rates in simple flow (far from c ∼ 1 K/min for AIDA as in Niemand et al. 2012)
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◮ CPU time trade off: time dependent ca. 3-4 times costlier
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key messages:
– emergence of comprehensive mixed-phase particle-based aerosol/cloud µ-physics models
– cooling rate embedded in INAS fits  limited robustness to different flow regimes
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