O lagranżowskiej reprezentacji mikrofizyki aerozolu, chmur i opadu w numerycznych modelach przepływów atmosferycznych

> Sylwester Arabas Uniwersytet Jagielloński

Zebranie Zespołu Fizyki Środowiska AGH 13 grudnia 2022 r.

► alma mater – fuw.edu.pl:

- ► alma mater fuw.edu.pl:
 - ► MSc (2008) mikrofizyczne pomiary lotnicze chmur

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur

- ► alma mater fuw.edu.pl:
 - ► MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

praca poza nauką:

- ► alma mater fuw.edu.pl:
 - ► MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

praca poza nauką:

2015–2017: Chatham Financial, Kraków

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)
- praca poza nauką:
 - ▶ 2015–2017: Chatham Financial, Kraków
 - ► 2017–2018: AETHON Enginering, Ateny

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

<ロ> <用> < 三> < 三> < 三> < 三</p>

praca poza nauką:

- 2015–2017: Chatham Financial, Kraków
- ► 2017–2018: AETHON Enginering, Ateny
- ▶ powrót na uczelnie:

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

praca poza nauką:

- 2015–2017: Chatham Financial, Kraków
- ► 2017–2018: AETHON Enginering, Ateny

powrót na uczelnie:

► 2018–2021: postdok na WMil UJ (FNP "POWROTY")

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

praca poza nauką:

- 2015–2017: Chatham Financial, Kraków
- ► 2017–2018: AETHON Enginering, Ateny

powrót na uczelnie:

- ► 2018–2021: postdok na WMil UJ (FNP "POWROTY")
- ▶ 2021–2022: postdok na U. Illinois Urbana-Champaign

- ► alma mater fuw.edu.pl:
 - MSc (2008) mikrofizyczne pomiary lotnicze chmur
 - PhD (2013) modelowanie mikrofizyki chmur
 - ► adiunkt (-2015): inżynieria oprogramowania CFD (github.com/igfuw)

praca poza nauką:

- 2015–2017: Chatham Financial, Kraków
- ► 2017–2018: AETHON Enginering, Ateny

powrót na uczelnie:

- ► 2018–2021: postdok na WMil UJ (FNP "POWROTY")
- 2021–2022: postdok na U. Illinois Urbana-Champaign
- ► 2022–2024: grant NCN "SONATA" w Krakowie

- Oddziaływania aerozol chmury opad
- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > の < @</p>

- Pakiet oprogramowania PySDM

- Oddziaływania aerozol - chmury - opad

– Modelowanie mikrofizyki chmur

– Symulacje Monte-Carlo zderzeń kropel

– Pakiet oprogramowania PySDM

Oddziaływania aerozol – chmury – opad: wybrane procesy

- aktywacja kropelek na aerozolu
- ► kondensacja

Oddziaływania aerozol - chmury - opad: wybrane procesy

- aktywacja kropelek na aerozolu
- ► kondensacja

- zderzenia pomiędzy kropelkami
- procesy chemiczne zachodzące w kropelkach

Oddziaływania aerozol - chmury - opad: wybrane procesy

- aktywacja kropelek na aerozolu
- ► kondensacja

- zderzenia pomiędzy kropelkami
- procesy chemiczne zachodzące w kropelkach

- ► opad
- wymywanie aerozolu
- odparowywanie kropelek

Oddziaływania aerozol – chmury – aerozol: przykłady

- Oddziaływania aerozol chmury opad
- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > の < @</p>

- Pakiet oprogramowania PySDM

- Oddziaływania aerozol - chmury - opad

- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel
- Pakiet oprogramowania PySDM

Reprezentacja mikrofizyki a skala modeli

opis zgrubny jedno-momentowy (bulk)

opis zgrubny jedno-momentowy (bulk)

opis zgrubny wielo-momentowy

opis zgrubny jedno-momentowy (bulk)

- opis zgrubny wielo-momentowy
- opis widmowy jednowymiarowy (bin)

opis zgrubny jedno-momentowy (bulk)

- opis zgrubny wielo-momentowy
- opis widmowy jednowymiarowy (bin)
- opis widmowy wielowymiarowy
 - realizacja eulerowska
 - realizacja lagranżowska

Jak opisywana jest mikrofizyka w LES

opis zgrubny jedno-momentowy (bulk)

- opis zgrubny wielo-momentowy
- opis widmowy jednowymiarowy (bin)
- opis widmowy wielowymiarowy
 - realizacja eulerowska
 - realizacja lagranżowska

dispersed phase

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(aerosol particles, cloud droplets, drizzle, rain, snow, ...)

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki Można im przypisywać atrybuty:

▶ położenie

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

- położenie
- promień mokry

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

- położenie
- promień mokry
- promień suchy

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

- ▶ położenie
- promień mokry
- promień suchy
- krotność

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

Można im przypisywać atrybuty:

- ▶ położenie
- promień mokry
- promień suchy
- krotność

. . .

・ロト・白ア・小川・ 小川・ 小口・

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

Można im przypisywać atrybuty:

- ▶ położenie
- promień mokry
- promień suchy
- krotność

▶ ...

Łatwość dodawania kolejnych atrybutów

W domenie rozmieszczone są obiekty które są nośnikiem informacji dot. mikrofizyki

Można im przypisywać atrybuty:

- ▶ położenie
- ▶ promień mokry
- promień suchy
- krotność

•

Łatwość dodawania kolejnych atrybutów

(np. przy opisie reakcji chemicznych czy procesów zależnych od składu izotopowego)

przykładowa symulacja (2D, mikrofizyka lagranżowska, zadany przepływ) xxxxxxxxxxxxxxxxxxxxxxx

przykładowa symulacja (2D, mikrofizyka lagranżowska, zadany przepływ) xxxxxxxxxxxxxxxxxxxxxxx

przykładowa symulacja (2D, mikrofizyka lagranżowska, zadany przepływ) xxxxxxxxxxxxxxxxxxxxxxxx

przykładowa symulacja (2D, mikrofizyka lagranżowska, zadany przepływ)

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

przykładowa symulacja (2D, mikrofizyka lagranżowska, zadany przepływ)

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

przykładowa symulacja (2D, mikrofizyka lagranżowska, zadany przepływ)

- イロ・ イヨ・ イヨ・ ヨー うへで

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

<ロ> < 四> < 回> < 回> < 回> < 回> < 回> < 回</p>

widma rozmiarów cząstek

10

0.1

0.01

0.1

0.01

2 2

2 2

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

- Oddziaływania aerozol chmury opad
- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > の < @</p>

- Pakiet oprogramowania PySDM

- Oddziaływania aerozol chmury opad
- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel
- Pakiet oprogramowania PySDM

 \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt

- \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt
- \blacktriangleright każdej reprezentującej ξ cząstek (aerozolu/chmury/opadu)

- \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt
- \blacktriangleright każdej reprezentującej ξ cząstek (aerozolu/chmury/opadu)
- prawdopodobieństwo zderzenia i-tej i j-tej super-kropelki:

 $P_{ij} = max(\xi_i, \xi_j) \cdot E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j| \cdot \frac{\Delta t}{\Delta V}$

- \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt
- \blacktriangleright każdej reprezentującej ξ cząstek (aerozolu/chmury/opadu)
- ▶ prawdopodobieństwo zderzenia i-tej i j-tej super-kropelki:

 $P_{ij} = max(\xi_i, \xi_j) \cdot E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j| \cdot \frac{\Delta t}{\Delta V}$

- dwie (spójne) możliwości reprezentacji zderzeń w symulacji Monte-Carlo:
 - część z ξ cząstek (określona przez P_{ij}) zderza i łączy się co Δt
 - $\min(\xi_i,\xi_j)$ kropel zdarza się i łączy raz na wiele (określone przez P_{ij}) $\Delta t \sim stała liczba super-kropelek (reprezentacja rozmiarów po zderzeniu)!$

- \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt
- \blacktriangleright każdej reprezentującej ξ cząstek (aerozolu/chmury/opadu)
- prawdopodobieństwo zderzenia i-tej i j-tej super-kropelki:

 $P_{ij} = max(\xi_i, \xi_j) \cdot E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j| \cdot \frac{\Delta t}{\Delta V}$

- dwie (spójne) możliwości reprezentacji zderzeń w symulacji Monte-Carlo:
 - część z ξ cząstek (określona przez P_{ij}) zderza i łączy się co Δt
 - $\min(\xi_i,\xi_j)$ kropel zdarza się i łączy raz na wiele (określone przez P_{ij}) $\Delta t \sim stała liczba super-kropelek (reprezentacja rozmiarów po zderzeniu)!$
- schemat Monte-Carlo: liczba losowa porównywana z P_{ij}

- \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt
- \blacktriangleright każdej reprezentującej ξ cząstek (aerozolu/chmury/opadu)
- prawdopodobieństwo zderzenia i-tej i j-tej super-kropelki:

 $P_{ij} = \max(\xi_i, \xi_j) \cdot E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |\mathbf{v}_i - \mathbf{v}_j| \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \left[\frac{n}{2}\right]$

- dwie (spójne) możliwości reprezentacji zderzeń w symulacji Monte-Carlo:
 - część z ξ cząstek (określona przez P_{ij}) zderza i łączy się co Δt
 - $\min(\xi_i,\xi_j)$ kropel zdarza się i łączy raz na wiele (określone przez P_{ij}) $\Delta t \sim stała liczba super-kropelek (reprezentacja rozmiarów po zderzeniu)!$
- schemat Monte-Carlo: liczba losowa porównywana z P_{ij}
- Sprawdzanie [n/2] losowych par (i,j) zamiast wszystkich par (i,j) koszt: O(n²) → O(n), prawdop. skalowane przez n·(n-1)/[n/2]

- \blacktriangleright dla *n* "super kropelek" w objętości ΔV w czasie Δt
- \blacktriangleright każdej reprezentującej ξ cząstek (aerozolu/chmury/opadu)
- ▶ prawdopodobieństwo zderzenia i-tej i j-tej super-kropelki:

 $P_{ij} = \max(\xi_i, \xi_j) \cdot E(r_i, r_j) \cdot \pi(r_i + r_j)^2 \cdot |v_i - v_j| \cdot \frac{\Delta t}{\Delta V} \cdot \frac{n \cdot (n-1)}{2} / \left[\frac{n}{2}\right]$

- dwie (spójne) możliwości reprezentacji zderzeń w symulacji Monte-Carlo:
 - część z ξ cząstek (określona przez P_{ij}) zderza i łączy się co Δt
 - min (ξ_i,ξ_j) kropel zdarza się i łączy raz na wiele (określone przez P_{ij}) $\Delta t \sim stała liczba super-kropelek (reprezentacja rozmiarów po zderzeniu)!$
- ► schemat Monte-Carlo: liczba losowa porównywana z P_{ij}
- Sprawdzanie [n/2] losowych par (i,j) zamiast wszystkich par (i,j) koszt: O(n²) → O(n), prawdop. skalowane przez n·(n-1)/[n/2]
- ▶ alternatywa eulerowska (i nie stochastyczna): równanie Smoluchowskiego

	Shin-ichiro Shima Graduate School of Information Science, <u>University of Hyogo</u> Verified email at simu-hyogo.ac.jp - <u>Homepage</u> Computational Physics Nonlinear Dynamics Complex Systems		
TITLE		CITED BY	YEAR
Rotating spiral w S Shima, Y Kuramot	aves with phase-randomized core in nonlocally coupled oscillators	323	2004
The super-drople based and proba S Shima, K Kusano, Quarterly Journal of	(a), 030-13 method for the numerical simulation of clouds and precipitation; a particle- bilistic microphysics model coupled with a non-hydrostatic model & Kawano, T Sugwana, S Kawahara he Royal Meteorological Society 135 (642), 1307-1320	189	2009

	Shin-ichiro Shima Graduate School of Information Science, <u>University of Hyoop</u> Verified email at sim.u-hyogo.ac.jp - <u>Homepage</u> Computational Physics Nonlinear Dynamics Complex Systems			
TITL	E	CITED BY	YEAR	
Rota	ating spiral waves with phase-randomized core in nonlocally coupled oscillators	323	2004	
Phys The base S Sh Quar	car revew E or (0), 00523 super-droplet method for the numerical simulation of clouds and precipitation: a particle- ed and probabilistic microphysics model coupled with a non-hydrostatic model mar. Kusano, A kawano, T Sugwama, Skawhama teny Journal of the Royal Meteorological Society 135 (642), 1307-1320	189	2009	

pierwsze zastosowanie w symulacjach 3D (LES): Arabas & Shima 2013 (JAS, 10.1175/JAS-D-12-0295.1)

	Shin-ichiro Shima Graduate School of Information Science, <u>University of Hyogo</u> Verified email at sim.u-hyogo.ac.jp - <u>Homepage</u> Computational Physics Nonlinear Dynamics Complex Systems			
TITLE		CITED BY	YEAR	
Rotating S Shima, Y	spiral waves with phase-randomized core in nonlocally coupled oscillators	323	2004	
Physical R The supe based an S Shima, K Quarterly J	view E 60 (3), 036213 -rdroptel method for the numerical simulation of clouds and precipitation; a particle- d probabilistic microphysics model coupled with a non-hydrostatic model Nicano, A Kawano, T Supyram, S Kawahana numal of the Royal Meteorological Society 135 (642), 1307-1320	189	2009	

- pierwsze zastosowanie w symulacjach 3D (LES): Arabas & Shima 2013 (JAS, 10.1175/JAS-D-12-0295.1)
- ▶ pierwsza implementacja na GPU (C++):

Arabas et al. 2015 (GMD, 10.5194/gmd-8-1677-2015)

	Shin-ichiro Shima Graduate School of Information Science, <u>University of Hyopo</u> Verified email at simu-hyopo.ac.jp - <u>Homepage</u> Computational Physics Nonlinear Dynamics Complex Systems			
TITLE		CITED BY	YEAR	
Rotating S Shima.	spiral waves with phase-randomized core in nonlocally coupled oscillators	323	2004	
Physical M The sup based at S Shima, I Quarterly	evew to et (3), 030213 er-droptet method for the numerical simulation of clouds and precipitation; a particle- id probabilistic microphysics model coupled with a non-hydrostatic model (kusano, A Kawano, T Sugyama, S Kawahara ournal of the Royal Meteorological Society 135 (642), 1307-1320	189	2009	

- pierwsze zastosowanie w symulacjach 3D (LES): Arabas & Shima 2013 (JAS, 10.1175/JAS-D-12-0295.1)
- pierwsza implementacja na GPU (C++): Arabas et al. 2015 (GMD, 10.5194/gmd-8-1677-2015)
- wysokowydajna impl. w Pythonie (na wielordzeniowe CPU i GPU): Bartman & Arabas 2021 (LNCS / ICCS@AGH, 10.1007/978-3-030-77964-1_2)

	Shin-ichiro Shima Graduate School of Information Science, <u>University of Hyogo</u> Verified email at sim.u-Hyogo.ac.jp - <u>Homepage</u> Computational Physics Nonlinear Dynamics Complex Systems		
TITLE		CITED BY	YEAR
Rotating spiral was S Shima, Y Kuramoto	ves with phase-randomized core in nonlocally coupled oscillators	323	2004
The super-droplet based and probab S Shima, K. Kusano, A Quarterly Journal of th	method for the numerical simulation of clouds and precipitation: a particle- ilistic microphysics model coupled with a non-hydrostatic model Kawano, T Sugama, S Kawahara e Royal Meteorological Society 135 (642), 1307-1320	189	2009

- pierwsze zastosowanie w symulacjach 3D (LES): Arabas & Shima 2013 (JAS, 10.1175/JAS-D-12-0295.1)
- pierwsza implementacja na GPU (C++): Arabas et al. 2015 (GMD, 10.5194/gmd-8-1677-2015)
- wysokowydajna impl. w Pythonie (na wielordzeniowe CPU i GPU): Bartman & Arabas 2021 (LNCS / ICCS@AGH, 10.1007/978-3-030-77964-1_2)
- rozszerzenie o opis rozpadu kropel przy zderzeniach: de Jong, Mackay, Jaruga & Arabas 2022 (GMD, 10.5194/egusphere-2022-1243)

	Shin-ichiro Shima Graduate School of Information Science, <u>University of Hyogo</u> Verified email at sim.u-hyogo.ac.jp - <u>Homepage</u> Computational Physics Nonlinear Dynamics Complex Systems		
TITLE		CITED BY	YEAR
Rotating spiral way S Shima, Y Ruramoto	ves with phase-randomized core in nonlocally coupled oscillators	323	2004
The super-droplet based and probab S Shima, K Kusano, A Quarterly Journal of th	o, tosocial method for the numerical simulation of clouds and precipitation: a particle- listic microphysics model coupled with a non-hydrostatic model Kawano, T. Sughama, S. Kawahara P Royal Meteorological Society 135 (642), 1307-1320	189	2009

- pierwsze zastosowanie w symulacjach 3D (LES): Arabas & Shima 2013 (JAS, 10.1175/JAS-D-12-0295.1)
- pierwsza implementacja na GPU (C++): Arabas et al. 2015 (GMD, 10.5194/gmd-8-1677-2015)
- wysokowydajna impl. w Pythonie (na wielordzeniowe CPU i GPU): Bartman & Arabas 2021 (LNCS / ICCS@AGH, 10.1007/978-3-030-77964-1_2)
- rozszerzenie o opis rozpadu kropel przy zderzeniach: de Jong, Mackay, Jaruga & Arabas 2022 (GMD, 10.5194/egusphere-2022-1243)
- połączenie z symulacją Monte-Carlo nukleacji lodu: Arabas, Riemer, et al. (w przygotowaniu, zob. np.: http://youtu.be/OOJe-JFMDpU)

- Oddziaływania aerozol chmury opad
- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > の < @</p>

- Pakiet oprogramowania PySDM

- Oddziaływania aerozol chmury opad
- Modelowanie mikrofizyki chmur
- Symulacje Monte-Carlo zderzeń kropel
- Pakiet oprogramowania PySDM

doi:10.21105/joss.03219

PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry

Piotr Bartman¹, Oleksii Bulenok¹, Kamil Górski¹, Anna Jaruga², Grzegorz Łazarski^{1,3}, Michael A. Olesik⁴, Bartosz Piasecki¹, Clare E. Singer², Aleksandra Talar¹, and Sylwester Arabas^{5,1}

1 Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland 2 Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, K. USA 3 Faculty of Chemistry, Jagiellonian University, Kraków, Poland 4 Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland 5 University of Illinois at Urbana-Champigin, Urbana, IL, USA

DOI: 10.21105/joss.03219

Software

- Review C
- Repository C
- Archive C

Editor: David Hagan @ Reviewers:

- @darothen
- Øjosephhardinee

Submitted: 31 March 2021 Published: 24 April 2022

License

Authors of papers retain

Introduction

PyS0B is an open-source Python package for simulating the dynamics of particles undergoing condensational and collisional growth, interacting with a fluid flow and subject to chemical composition changes. It is intended to serve as a building block for process-level as well as computational-fluid dynamics simulation systems involving representation of a continuous phase (ar) and a dispersed phase (aerosol), with PyS0B being responsible for representation of the dispersed phase. For major version 1 (v1), the development has been focused on atmospheric cloud physics applications, in particle-based approach contrasts the more commonly used bulk and bin methods in which atmospheric particles are segregated into multiple categories (aerosol, cloud rain) and their ovaltions for setting by deterministic dynamics solved on the same Eulerian grid as the dynamics of the continuous phase. Particle-based approach contrast the mode of monoly used bulk and bin methods in which atmospheric particles are segregated into multiple categories discrete computational (suce) particles for modeling the dispansed phase. Each super particle

Download paper

Software archive

Review

Editor: @dhhagan (all papers) Reviewers: @darothen (all reviews), @josephhardinee (all reviews)

Authors

Piotr Bartman (0000-0003-0265-6429), Oleksii Bulenob (000-0003-2272-6549), Kamil Górski, Anna Jaruga (0000-0002-3104-6449), Grzegotz Lazarski (0000-0002-5959-977X), Michael A. Oleski (0000-0002-6510-9559), Bartosz Pisacok, Clare E. Sinoer (0000-0002-1208-0927), Aleksandra Talar, Sviwester Arabas (0000-0002-3281-0082)

Citation

Bartman et al., (2022). PySDM v1: particle-based cloud modeling package for warm-rain microphysics and aqueous chemistry. Journal of Open Source Software, 7(72), 3219, https://doi.org/10.21105 /joss.03219

Copy citation string - Copy BibTeX

Tags

ubraica-simulation monte-carlo-simulation que-computing atmospheric-modeling particle-system numbe throat monte unt atmospheric-structure

Altmetrics

License

Authors of JOSS papers retain copyright.

This work is licensed under a Creative Commons

- ► 100% Python python.org
- ► Numba (JIT→LLVM, multi-threading) numba.pydata.org
- ThrustRTC (GPU-resident) pypi.org/p/ThrustRTC

- ► 100% Python python.org
- ▶ Numba (JIT→LLVM, multi-threading) numba.pydata.org
- ThrustRTC (GPU-resident) pypi.org/p/ThrustRTC
- GitHub & GitHub Actions github.com
- Codecov codecov.io
- AppVeyor appveyor.com

- ► 100% Python python.org
- ▶ Numba (JIT→LLVM, multi-threading) numba.pydata.org
- ThrustRTC (GPU-resident) pypi.org/p/ThrustRTC
- GitHub & GitHub Actions github.com
- Codecov codecov.io
- AppVeyor appveyor.com
- Jupyter jupyter.org
- Binder mybinder.org
- Colab colab.research.google.com

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)
Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

Rozdzielczość siatki eulerowskiej: 128x128 Rozdzielczość symulacji lagranżowskiej: 2²¹ super-kropelek

Opracowania i wizualizacja: Piotr Bartman (praca mgr @ WMil UJ)

PySDM: 100% Python, Jupyter \rightarrow przykłady

ヨー のへの

PySDM: 100% Python, Jupyter \rightsquigarrow przykłady, backendy CPU i GPU

E 996

https://atmos.ii.uj.edu.pl/

Atmospheric Cloud Simulation Group @ Jagiellonian University @ Point & Processing data	
Versel & preparation preparation preparation of the set of the se	O Vare as Puble + Tors are ware the page as a public asta Poppi O Vare as Puble + O Var
atmos oloud sim udits. Intel Index 2014 Udita dias janeal Funding: Intel Fanding by Park - Funding by 1901 Udit US DOE Funding by ASR	

współautorzy

- Quj.edu.pl: P. Bartman, M. Olesik, G. Łazarski, O. Bulenok, K. Derlatka, ...
- ▶ @caltech.edu: E. de Jong, C. Singer, A. Jaruga, B. Mackay, S. Azimi, ...
- ▶ @illinois.edu: N. Riemer, M. West & J. Curtis

współautorzy

• Quj.edu.pl: P. Bartman, M. Olesik, G. Łazarski, O. Bulenok, K. Derlatka, ...

- @caltech.edu: E. de Jong, C. Singer, A. Jaruga, B. Mackay, S. Azimi, ...
- ▶ @illinois.edu: N. Riemer, M. West & J. Curtis

finansowanie

- ► PL / Narodowe Centrum Nauki
- ► EU / Fundacja na rzecz Nauki Polskiej
- ► US / DOE Atmospheric System Research & Schmidt Futures

współautorzy

- Quj.edu.pl: P. Bartman, M. Olesik, G. Łazarski, O. Bulenok, K. Derlatka, ...
- @caltech.edu: E. de Jong, C. Singer, A. Jaruga, B. Mackay, S. Azimi, ...
- @illinois.edu: N. Riemer, M. West & J. Curtis

finansowanie

- ▶ PL / Narodowe Centrum Nauki
- ► EU / Fundacja na rzecz Nauki Polskiej
- ► US / DOE Atmospheric System Research & Schmidt Futures

Dziękuję za uwagę!

https://atmos.ii.uj.edu.pl/ sylwester.arabas@uj.edu.pl

<ロト < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lagranżowski opis $\mu\text{-fizyki}$ a dynamika płynu

komponent eulerowski (PDE)	komponent lagranżowski (ODE/Monte-Carlo)

komponent eulerowski (PDE)	komponent lagranżowski (ODE/Monte-Carlo)
adwekcja ciepła	transport cząstek
adwekcja wilgoci	

komponent eulerowski (PDE)	komponent lagranżowski (ODE/Monte-Carlo)
adwekcja ciepła	transport cząstek
adwekcja wilgoci	wzrost kondensacyjny
	wzrost koagulacyjny
	osiadanie

komponent eulerowski (PDE)	komponent lagranżowski (ODE/Monte-Carlo)
adwekcja ciepła	transport cząstek
adwekcja wilgoci	wzrost kondensacyjny
	wzrost koagulacyjny
	osiadanie
$\partial_t(\rho_d r) + \nabla \cdot (\vec{v}\rho_d r) = \rho_d \dot{r}$ $\partial_t(\rho_d \theta) + \nabla \cdot (\vec{v}\rho_d \theta) = \rho_d \dot{\theta}$	$\dot{r} = \sum_{\substack{\text{cząstki} \in \Delta V \\ \dot{ heta} = \sum_{\substack{\text{cząstki} \in \Delta V}} \dots }$

komponent eulerowski (PDE)	komponent lagranżowski (ODE/Monte-Carlo)
adwekcja ciepła	transport cząstek
adwekcja wilgoci	wzrost kondensacyjny
	wzrost koagulacyjny
	osiadanie
$\partial_t(\rho_d r) + \nabla \cdot (\vec{v}\rho_d r) = \rho_d \dot{r}$ $\partial_t(\rho_d \theta) + \nabla \cdot (\vec{v}\rho_d \theta) = \rho_d \dot{\theta}$	$\dot{r} = \sum_{\substack{\text{cząstki} \in \Delta V \\ \dot{ heta} = \sum_{\substack{\text{cząstki} \in \Delta V}} \dots }$
adwekcja gazów śladowych	reakcje chemiczne w kroplach
	••••

<ロ> <母> <母> <き> <き> <き> き のQの