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Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025251

Key Points:

« Very ice active Snomax protein
aggregates are fragile and their ice
nucleation ability decreases over
months of freezer storage

+ Partitioning of ice active protein
aggregates into the immersion oil
reduces the droplet's measured
freezing temperature

The unstable ice nucleation properties of Snomax®
bacterial particles
Michael Polen’, Emily Lawlis’, and Ryan C. Sullivan'

"Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract snomax®is often used asa surrogate for biological ice nucleating particles (INPs) and has recently
been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion
freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability


https://www.reuters.com/markets/commodities/making-snow-stick-wind-challenges-winter-games-slope-makers-2021-11-29/
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Cat's Cradle

Cat's Cradle is a satirical postmodern novel, with science fiction elements, by American writer Kurt
‘Vonnegut. Vonnegut's fourth novel, it was first published in 1963, exploring and satirizing issues of science,
technology, the purpose of religion, and the arms race, often through the use of morbid humor.

Synopsis

Background

The first-person everyman narrator, a professional writer introducing himself as Jonah (but apparently
named John and never named again), frames the plot as a flashback. Set in the mid-20th century, the plot
revolves around a time when he was planning to write a book called The Day the World Ended about what
people were doing on the day of the atomic bombing of Hiroshima. Throughout, he also intersperses
meaningful as well as sarcastic passages and sentiments from an odd religious scripture known as The Books
of Bokonon. The events of the novel evidently occur before the narrator was converted to his current religion,
Bokononism.

Plot summary

While researching for his upcoming book, the narrator travels to Ilium, New York, the hometown of the late
Felix Hoenikker, a co-creator of the atomic bomb and Nobel laureate physicist, to interview Hoenikker's
children, coworkers, and other acquaintances. There, he learns of a substance called ice-nine, created for
military use by Hoenikker and now likely in the possession of his three adult children. Ice-nine is an
alternative structure of water that is solid at room temperature and acts as a seed crystal upon contact with
ordinary liquid water, causing that liquid water to instantly freeze and transform into more ice-nine. Among

Cat's Cradle

Cat's Cradle

anover'sy KURT VONNEGUT, JR.

First edltlon hardback cover
Author
Original title Cat's Cradie
United States

Kurt Vonnegut

Country

Language English
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Vali 2014 (ACP)

" Interpretations of the experimental results
face considerable difficulties ... two separate
ways of interpreting the same observations;
one assigned primacy to time the other
emphasized the temperature-dependent
impacts of the impurities ... dichotomy —
the stochastic and singular models”
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Poisson counting process with rate r:

(rt)* exp(—rt)

P (k events in time t) = o

P(one or more events in timet) = 1 — P*(k = 0, t)

In(1—P)=—rt

6/20



theory (in modern notation)
(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poisson counting process with rate r:

In(1—-P)=—rt
introducing Jhet(T), T(t) and INP surface A:

In(1—P(A 1)) = /Jhet(T(t’)) dt
0
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ns(T)
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/73.php, photo: KIT/Ottmar Mohler)
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/73.php, photo: KIT/Ottmar Mohler)

AIDA cooling rate: 0.5 K/min
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Shima, Sato, Hashimoto & Misumi 2020 (GMD):
Predicting the morphology of ice particles in deep convection using the super-droplet method

Performance of over 10 Peta
floating point number operations per second

(10 Peta=10,000,000,000,000,000)
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Shima, Sato, Hashimoto & Misumi 2020 (GMD):
Predicting the morphology of ice particles in deep convection using the super-droplet method

immersion freezing (singular)

Performance of over 10 Peta
floating point number operations per second

(10 Peta=10,000,000,000,000,000)




super particles

(50:50 immersed-surface-rich vs. immersed-surface-free split)
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new open-source HPC packages: Bartman et al. 2022 (JOSS)
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radius [um] (particles)

Time: 30 s (spin-up 1ill 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 60 s (spin-up 1ill 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 90 s (spin-up 1ill 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 120 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 150 s (spin-up till 600.0 s)

X (m)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 180 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 210 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 240 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 270 s (spin-up till 600.0 s)

X (m)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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o =

radius [um] (particles)

Time: 300 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 330 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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radius [um] (particles)

Time: 360 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 390 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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radius [um] (particles)

Time: 420 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 450 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 480 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 510 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 540 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 570 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 600 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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radius [um] (particles)

Time: 630 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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radius [um] (particles)

Time: 660 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 690 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Naer

Time: 720 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
= 300/cc (two-mode lognormal)  Njyp = 150/L (lognormal, Dg =0.74 pm, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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radius [um] (particles)

Time: 750 s (spin-up till 600.0 s)

X (m)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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radius [um] (particles)

Time: 780 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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radius [um] (particles)

Time: 810 s (spin-up till 600.0 s)

X (m)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 840 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 870 s (spin-up till 600.0 s)

X (m)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 900 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

— 250

— 200

— 150
100
50

n¢ [1/cc] (wireframe)



[ ————

o =

radius [um] (particles)

Time: 930 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 960 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 990 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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radius [um] (particles)

Time: 1050 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)



radius [um] (particles)

Time: 1080 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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radius [um] (particles)

Time: 1110 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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radius [um] (particles)

Time: 1140 s (spin-up till 600.0 s)

X (m)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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Time: 1170 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers
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radius [um] (particles)

Time: 1200 s (spin-up till 600.0 s)

16416 super-particles/cell for INP-rich -+ INP-free particles
Naer = 300/ cc (two-mode lognormal)  Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers

n¢ [1/cc] (wireframe)
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» singular vs. time-dependent markedly different
(consistent with box model for ¢ < 1K /min)
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"it is becoming very clear that the cloud-phase feedback
contributes substantially to the uncertainty in predictions of the
rate at which our planet will warm in response to CO> emissions”

"core physical process that drives the cloud-phase feedback is the
transition to clouds with more liquid water and less ice as the
isotherms shift upwards in a warmer world”
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» it is becoming very clear that the cloud-phase feedback
contributes substantially to the uncertainty in predictions of the
rate at which our planet will warm in response to CO> emissions”

» "core physical process that drives the cloud-phase feedback is the
transition to clouds with more liquid water and less ice as the
isotherms shift upwards in a warmer world”

» "models need to improve their representation of ice-related
microphysical processes; in particular, they need to include a direct
link to aerosol type, specifically INPs”
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"it is becoming very clear that the cloud-phase feedback
contributes substantially to the uncertainty in predictions of the
rate at which our planet will warm in response to CO> emissions”

"core physical process that drives the cloud-phase feedback is the
transition to clouds with more liquid water and less ice as the
isotherms shift upwards in a warmer world”

"models need to improve their representation of ice-related
microphysical processes; in particular, they need to include a direct
link to aerosol type, specifically INPs”

"must also represent the INP removal processes, which in turn
depend on a correct representation of the microphysics”
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