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The unstable ice nucleation properties of Snomax®

bacterial particles

Michael Polen1, Emily Lawlis1, and Ryan C. Sullivan1

1Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract Snomax® is often used as a surrogate for biological ice nucleating particles (INPs) and has recently

been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion

freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025251

Key Points:

• Very ice active Snomax protein

aggregates are fragile and their ice

nucleation ability decreases over

months of freezer storage

• Partitioning of ice active protein

aggregates into the immersion oil

reduces the droplet’s measured

freezing temperature

• Caution is warranted in the use of

https://www.reuters.com/markets/commodities/making-snow-stick-wind-challenges-winter-games-slope-makers-2021-11-29/
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Vali 2014 (ACP)

”Interpretations of the experimental results

face considerable difficulties ... two separate

ways of interpreting the same observations;

one assigned primacy to time the other

emphasized the temperature-dependent

impacts of the impurities ... dichotomy –

the stochastic and singular models”

https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
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theory (in modern notation)
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/73.php, photo: KIT/Ottmar Möhler)
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/73.php, photo: KIT/Ottmar Möhler)

AIDA cooling rate: 0.5 K/min

https://www.imk-aaf.kit.edu/73.php
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new open-source HPC packages: Bartman et al. 2022 (JOSS)
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Python 3 LLVM Numba CUDA ThrustRTC Linux ✓ macOS ✓

Windows ✓ Jupyter ✓ Maintained? yes

JOSS 10.21105/joss.03219 DOI 10.5281/zenodo.7851352

EU Funding by FNP PL Funding by NCN US DOE Funding by ASR

License GPL v3

tests+artifacts+pypi passing build passing codecov 78%

API docs pdoc3

CPU
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✓
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EU Funding by FNP PL Funding by NCN License GPL v3
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Lagrangian component (PySDM)

Eulerian component (PyMPDATA)
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16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



17/20

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers



18/20

▶ singular vs. time-dependent markedly different
(consistent with box model for c ≪ 1K/min)



18/20

▶ singular vs. time-dependent markedly different
(consistent with box model for c ≪ 1K/min)

▶ range of cooling rates in simple Ćow
(far from c ∼ 1 K/min for AIDA as in Niemand et al. 2012)
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rate at which our planet will warm in response to CO2 emissions”

▶ ”core physical process that drives the cloud-phase feedback is the

transition to clouds with more liquid water and less ice as the

isotherms shift upwards in a warmer world”

▶ ”models need to improve their representation of ice-related

microphysical processes; in particular, they need to include a direct

link to aerosol type, speciĄcally INPs”

▶ ”must also represent the INP removal processes, which in turn

depend on a correct representation of the microphysics”
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