Immersion freezing in particle-based aerosol-cloud microphysics: a probabilistic perspective on singular and time-dependent models

S. Arabas¹, J.H. Curtis², I. Silber³, A. Fridlind⁴, D.A Knopf⁵, M. West² & N. Riemer²

2023 ARM/ASR Joint User Facility/PI Meeting, Rockville, MD

Breakout session: Primary and secondary ice production and impacts on mixed-phase and ice clouds

Time: 30 s (spin-up till 600.0 s)

Time: 60 s (spin-up till 600.0 s)

Time: 90 s (spin-up till 600.0 s)

Time: 120 s (spin-up till 600.0 s)

Time: 150 s (spin-up till 600.0 s)

Time: 180 s (spin-up till 600.0 s)

Time: 210 s (spin-up till 600.0 s)

Time: 240 s (spin-up till 600.0 s)

Time: 270 s (spin-up till 600.0 s)

Time: 300 s (spin-up till 600.0 s)

Time: 330 s (spin-up till 600.0 s)

Time: 360 s (spin-up till 600.0 s)

Time: 390 s (spin-up till 600.0 s)

Time: 420 s (spin-up till 600.0 s)

Time: 450 s (spin-up till 600.0 s)

Time: 480 s (spin-up till 600.0 s)

Time: 510 s (spin-up till 600.0 s)

Time: 540 s (spin-up till 600.0 s)

Time: 570 s (spin-up till 600.0 s)

Time: 600 s (spin-up till 600.0 s)

Time: 630 s (spin-up till 600.0 s)

Time: 660 s (spin-up till 600.0 s)

Time: 690 s (spin-up till 600.0 s)

Time: 720 s (spin-up till 600.0 s)

Time: 750 s (spin-up till 600.0 s)

Time: 780 s (spin-up till 600.0 s)

Time: 810 s (spin-up till 600.0 s)

Time: 840 s (spin-up till 600.0 s)

Time: 870 s (spin-up till 600.0 s)

Time: 900 s (spin-up till 600.0 s)

Time: 930 s (spin-up till 600.0 s)

Time: 960 s (spin-up till 600.0 s)

Time: 990 s (spin-up till 600.0 s)

Time: 1020 s (spin-up till 600.0 s)

Time: 1050 s (spin-up till 600.0 s)

Time: 1080 s (spin-up till 600.0 s)

Time: 1110 s (spin-up till 600.0 s)

Time: 1140 s (spin-up till 600.0 s)

Time: 1170 s (spin-up till 600.0 s)

Time: 1200 s (spin-up till 600.0 s)

Time: 1200 s (spin-up till 600.0 s)

100% Python, 100% open-source, 100% runs "in the cloud" (Google Colab, jupyterhub, ...)

new open-source HPC Python packages

Search Search	projects	Q	
PyMPDATA 1.0.11			
pip install PyMP	DATA D		
Namba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Natlab			
Navigation	Project descript	ion	
E Project description	PyMPDATA		
3 Release history	D Python R McKeller Hannes, Children C. Charles (2) Constant (2)		
A Download Nes	2015 BL 201553044 60000 TOX 101529 LORING TRADIUS		
Project links	Construction Land (A	build pasting Producty 97	
Documentation	PyNPDATA is a high-perf	ormance Namba-accelerate	d Pythonic implementation
O Source	of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical fluid		
n Tracker	equations - partial differ laws, scalar transport pr	ential equations used to mo oblems, convection diffusio	enerarised transport del conservation/balance n phenomena. As of the
Statistics	current version, PyNPD# using structured meshes	TA supports homogeneous , optionally generalised by e	transport in 1D, 2D and 3D imployment of a Jacobian
GitHub statistics:	of coordinate transforms	ition. PyMPDATA includes in no the post-pecilitate contin-	plementation of a set of
🚖 Stars: 20	Row, double-pass donor	cell (DPDC) and third-order-	terres options. It also
P Forks: 10	features support for inte	gration of Fickian-terres in a	dvection diffusion
Open Issues: 25	simulations, domain-dee	composition is used for mult	i-threaded parallelism.
P1 Open PRs13	PyNPDATA is engineered	purely in Python targeting.	ooth performance and
View statistics for this project via Libraries in PL	unability, the latter enco	repassing research users', de	velopers' and maintainers' 616 offers bossle from

new open-source HPC Python packages

PyPartMC 0.5.0 nin install PuPartWC d Navigation Project description E Project descripti D Release history - Description of Floor PvPartMC PyPartMC is a Python interface to Particle, a particle resolved Monte-Carlo code for Project links B Documentation O Searce 10 110 Participate ANR Lineses OPA 11 Copyright MARC Management (1995) Chevron assured in the second states of di Tracher TL:DR (try in a Jupyter notebook) Pythan I A Long C. C mastle C. Provident / Suppler * Stare 15 P. Doby 6. SHOULD PREATING O Deep James 14 P1 Open Pity 3 hunder notebooks with examples View statistics for this or by using par public mender advocante () Cyree in Carate () Samerich Samere dataset on Gooda mender advocant (C) Open in Callab (1) Saurech Sander (C) Volla and app

100

- 0.1

200

100

particle attribute sampling

random sampling of immersed surface for each particle

random sampling of freezing temperatures (conditional distribution for a given surface)

particle attribute sampling

random sampling of immersed surface for each particle

random sampling of freezing temperatures (conditional distribution for a given surface)

for singular: sampling from INAS-derived pdf

 $w_{\rm max} \approx 3 {\rm m/s}$

• singular vs. time-dependent markedly different (as in box model for $c \ll 1K/min$)

• singular vs. time-dependent markedly different (as in box model for $c \ll 1K/min$)

• diverse cooling rates even in a simple flow (far from $c \sim 1$ K/min for AIDA)

stay tuned: Arabas et al. 2023 (in prep.; e-print uploaded to arXiv)

100% Python & open-source: github.com/open-atmos

contact: sylwester.arabas@agh.edu.pl