& PyPartmc

- gy .
aerosol dynamics package:

Sylwester Arabas!, Zach D'Aquino?, Jeff Curtis?, Nicole Riemer?, Matt West>
& [Py]PartMC contributors

Jan 26" 2024
Columbia University, New York

Physics & Applied CS, AGH University of Krakow, Poland (agh.edu.pl)
2 Atmospheric Sciences, University of lllinois at Urbana-Champaign (atmos.illinois.edu)

3Mechanical Science & Engineering, University of lllinois at Urbana-Champaign (mechse.illinois.edu)

https://agh.edu.pl/en
https://atmos.illinois.edu/
https://mechse.illinois.edu/

» long story short:

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

> long story short:
» PhD (physics) @ University of Warsaw, PL (+ JAMSTEC, JP)
~~ Arabas & Shima 2013 (JAS): LES with probabilistic particle-based p-physics
~ libcloudph-+-+: particle-based p-physics on GPU (Arabas et al. 2015, GMD)

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

> long story short:
» PhD (physics) @ University of Warsaw, PL (+ JAMSTEC, JP)
~~ Arabas & Shima 2013 (JAS): LES with probabilistic particle-based p-physics
~ libcloudph-+-+: particle-based p-physics on GPU (Arabas et al. 2015, GMD)
» "fintech” break:
~ Arabas & Farhat 2020 (JCAM): derivative pricing as a transport problem

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

> long story short:
» PhD (physics) @ University of Warsaw, PL (+ JAMSTEC, JP)
~~ Arabas & Shima 2013 (JAS): LES with probabilistic particle-based p-physics
~ libcloudph-+-+: particle-based p-physics on GPU (Arabas et al. 2015, GMD)
» "fintech” break:
~ Arabas & Farhat 2020 (JCAM): derivative pricing as a transport problem

» postdoc @ Jagiellonian University, Krakéw, PL
~ PySDM & PyMPDATA

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

> long story short:

» PhD (physics) @ University of Warsaw, PL (+ JAMSTEC, JP)
~~ Arabas & Shima 2013 (JAS): LES with probabilistic particle-based p-physics
~ libcloudph-+-+: particle-based p-physics on GPU (Arabas et al. 2015, GMD)

» "fintech” break:
~ Arabas & Farhat 2020 (JCAM): derivative pricing as a transport problem

» postdoc @ Jagiellonian University, Krakéw, PL
~+ PySDM & PyMPDATA

» postdoc (Nicole Riemer's group) @ University of lllinois, Urbana-Champaign, USA
~> Monte-Carlo immersion freezing in particle-based p-physics & PyPartMC

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

> long story short:

» PhD (physics) @ University of Warsaw, PL (+ JAMSTEC, JP)
~~ Arabas & Shima 2013 (JAS): LES with probabilistic particle-based p-physics
~ libcloudph-+-+: particle-based p-physics on GPU (Arabas et al. 2015, GMD)

» "fintech” break:
~ Arabas & Farhat 2020 (JCAM): derivative pricing as a transport problem

» postdoc @ Jagiellonian University, Krakéw, PL
~+ PySDM & PyMPDATA

» postdoc (Nicole Riemer's group) @ University of lllinois, Urbana-Champaign, USA
~> Monte-Carlo immersion freezing in particle-based p-physics & PyPartMC

» since mid '23: @ AGH University of Krakow, PL
~~ isotopic composition of water in particle-based p-physics

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

> long story short:

» PhD (physics) @ University of Warsaw, PL (+ JAMSTEC, JP)
~~ Arabas & Shima 2013 (JAS): LES with probabilistic particle-based p-physics
~ libcloudph-+-+: particle-based p-physics on GPU (Arabas et al. 2015, GMD)

» "fintech” break:
~ Arabas & Farhat 2020 (JCAM): derivative pricing as a transport problem

» postdoc @ Jagiellonian University, Krakéw, PL
~» PySDM & PyMPDATA

» postdoc (Nicole Riemer's group) @ University of lllinois, Urbana-Champaign, USA
~> Monte-Carlo immersion freezing in particle-based p-physics & PyPartMC

» since mid '23: @ AGH University of Krakow, PL
~~ isotopic composition of water in particle-based p-physics

» maintainer & developer:
» github.com/numba-mpi
» github.com/open-atmos/{PySDM,PyMPDATA,PyPartMC}

http://doi.org/10.1175/JAS-D-12-0295.1
http://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.1016/j.cam.2019.05.023
https://github.com/numba-mpi/
https://github.com/open-atmos/

& PyPartmc

- gy .
aerosol dynamics package:

Sylwester Arabas!, Zach D'Aquino?, Jeff Curtis?, Nicole Riemer?, Matt West>
& [Py]PartMC contributors

Jan 26" 2024
Columbia University, New York

Physics & Applied CS, AGH University of Krakow, Poland (agh.edu.pl)
2 Atmospheric Sciences, University of lllinois at Urbana-Champaign (atmos.illinois.edu)

3Mechanical Science & Engineering, University of lllinois at Urbana-Champaign (mechse.illinois.edu)

https://agh.edu.pl/en
https://atmos.illinois.edu/
https://mechse.illinois.edu/

& PyPartmc

aerosol dynamics package:
engineering Python-to-Fortran bindings
in C++, for use in Julia and Matlab

Sylwester Arabas!, Zach D'Aquino?, Jeff Curtis?, Nicole Riemer?, Matt West>
& [Py]PartMC contributors

Jan 26" 2024
Columbia University, New York

!Physics & Applied CS, AGH University of Krakow, Poland (agh.edu.pl)
2 Atmospheric Sciences, University of lllinois at Urbana-Champaign (atmos.illinois.edu)

3Mechanical Science & Engineering, University of lllinois at Urbana-Champaign (mechse.illinois.edu)

https://agh.edu.pl/en
https://atmos.illinois.edu/
https://mechse.illinois.edu/

PyPartMC: context / statement of need

PyPartMC: goals and status

PyPartMC: design & implementation outline

PyPartMC: demo

PyPartMC: summary

«0O>» «Fr « >

<

i
v

DA 425

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

https://lagrange.mechse.illinois.edu/partmc/

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

» Monte-Carlo aerosol dynamics simulation package

https://lagrange.mechse.illinois.edu/partmc/

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

» Monte-Carlo aerosol dynamics simulation package
» open source, v1.0.0 back in 2007

https://lagrange.mechse.illinois.edu/partmc/

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

» Monte-Carlo aerosol dynamics simulation package
» open source, v1.0.0 back in 2007

» developed by Riemer, West, Curtis, et al.

https://lagrange.mechse.illinois.edu/partmc/

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

» Monte-Carlo aerosol dynamics simulation package
» open source, v1.0.0 back in 2007
» developed by Riemer, West, Curtis, et al.

» box-model framework with a coupler to, e.g., WRF

https://lagrange.mechse.illinois.edu/partmc/

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

» Monte-Carlo aerosol dynamics simulation package

» open source, v1.0.0 back in 2007

» developed by Riemer, West, Curtis, et al.

» box-model framework with a coupler to, e.g., WRF

» coagulation, condensation, gas- and particle-phase chemistries (MOSAIC/CAMP)

u]
)]
I
ut
it
4

DA ¢

https://lagrange.mechse.illinois.edu/partmc/

vVvyVvVvyyypy

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

Monte-Carlo aerosol dynamics simulation package

open source, v1.0.0 back in 2007

developed by Riemer, West, Curtis, et al.

box-model framework with a coupler to, e.g., WRF

coagulation, condensation, gas- and particle-phase chemistries (MOSAIC/CAMP)

highlight: aerosol mixing state evolution

u]
)]
I
ut
it
4

DA ¢

https://lagrange.mechse.illinois.edu/partmc/

vVvvyVvYVYyyypy

G Partmc

https://lagrange.mechse.illinois.edu/partmc/

Monte-Carlo aerosol dynamics simulation package

open source, v1.0.0 back in 2007

developed by Riemer, West, Curtis, et al.

box-model framework with a coupler to, e.g., WRF

coagulation, condensation, gas- and particle-phase chemistries (MOSAIC/CAMP)
highlight: aerosol mixing state evolution

object-oriented architecture, F90, extensive automated test suite

=] & = = £ 9DHAC ¢

https://lagrange.mechse.illinois.edu/partmc/

\
@ t
LLNL
SUNDIALS |

o)
FORTRAN //I
7 &
>

S0

PyPartMC: context / statement of need

PyPartMC: goals and status

PyPartMC: design & implementation outline

PyPartMC: demo

PyPartMC: summary

«0O>» «Fr « >

<

i
v

DA 7/25

project goals

» lower the entry threshold for installing and setting up of PartMC
down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’'t even need to know FORTRAN is involved

project goals

» lower the entry threshold for installing and setting up of PartMC
down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’'t even need to know FORTRAN is involved

» ensure the same experience on Linux, macOS & Windows

project goals

» lower the entry threshold for installing and setting up of PartMC
down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’'t even need to know FORTRAN is involved

» ensure the same experience on Linux, macOS & Windows

» lower the entry threshold for usage with Jupyter-based example notebooks

project goals

| 2

lower the entry threshold for installing and setting up of PartMC
down to , 1.e., no manual dependency installation,
no compilation, user doesn’'t even need to know FORTRAN is involved

ensure the same experience on Linux, macOS & Windows
lower the entry threshold for usage with Jupyter-based example notebooks

streamline the dissemination of paper-result reproducers (peer review)

status of the project: v1.0 in Dec 2023 (started 2021)

SoftwareX

ORIGINAL SOFTWARE PUBLICATION

PyPartMC: A Pythonic interface to a particle-resolved, Monte Carlo aerosol
simulation framework

9

Zachary D'Aquino ® Sylwester Arabas ® Jeffrey H. Curtis ® Akshunna Vaishnav ® Nicole Riemer & * Matthew West

* Published: December 23, 2023 * DOI: https://doi.org/10.1016/j.s0ftx.2023.101613

PyPartMC 1.0.1

pip install PyPartMC (® Released: Dec 16, 2023

PyPartMC: context / statement of need

PyPartMC: goals and status

PyPartMC: design & implementation outline

PyPartMC: demo

PyPartMC: summary

«O» «Fr o«

DA™ 10/25

pybind11

$ master ~ §927Branches ©58Tags ¥ © Q Gotofile Go tofile .-+ About

Seamless operability between C++11

[README s[5 License &[5 Security and Python

@ pybind11.readthedocs.io/

#python #bindings

O
I Readme
5 View license
&8 Security policy
A~ Activity

‘...vam properties
s‘ {3 143Kk stare’%, 2,
S © 250watching &
pybind11 — Seamless operability between C++11 and Python] E

&

s s! 21k forks

e
chat BN) Discussions sk T
[pack n 211.1] pypi v2.11.1 | conda-forge v2.11.0

‘o

Releases 21

Setuptools example « Scikit-build example « CMake example © Version 2.11.1 \’LaED
on Jul 17, 2023
pybind11 is a lightweight header-only library that exposes C++ types in Python and vice versa, mainly to create
Python bindings of existing C++ code. Its goals and syntax are similar to the excellent Boost.Python library by David Ml
Abrahams: to minimize boilerplate code in traditional extension modules by inferring type information using compile- .mu' in,
time introspection. :: Contributors 337 ::
Tttty ..m--““‘

\
@ t
LLNL
SUNDIALS |

o)
FORTRAN //I
7 &
>

S0

» written in C/Fortran/C++ as C++ bindings to PartMC intetrnals (derived types),
Python bindings generated using pybind11

«0O)>» «Fr « =»

«E)»

DA 13728

» written in C/Fortran/C++ as C4++ bindings to PartMC intetrnals (derived types),
Python bindings generated using pybind11

P three-language build automation with CMake, test automation with pytest, Cl workflows

«0O0>» «F» «=>» «E)»

DA 13728

» written in C/Fortran/C++ as C4++ bindings to PartMC intetrnals (derived types),
Python bindings generated using pybind11

P three-language build automation with CMake, test automation with pytest, Cl workflows

» JSON-based reimplementation of PartMC "spec-file" i/o module
(unmodified code of PartMC uses original API)

~» minimising effort to accommodate future additions to PartMC

«0O0>» «F» «=>» «E)»

DA 13728

» written in C/Fortran/C++ as C4++ bindings to PartMC intetrnals (derived types),
Python bindings generated using pybind11

P three-language build automation with CMake, test automation with pytest, Cl workflows

» JSON-based reimplementation of PartMC "spec-file" i/o module
(unmodified code of PartMC uses original API)
~» minimising effort to accommodate future additions to PartMC

» freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

«0>» «Fr «=)r» «=)»

DA 13728

solving the challenges
» written in C/Fortran/C++ as C++ bindings to PartMC intetrnals (derived types),
Python bindings generated using pybind11
» three-language build automation with CMake, test automation with pytest, Cl workflows

» JSON-based reimplementation of PartMC "spec-file” i/o module
(unmodified code of PartMC uses original API)
~» minimising effort to accommodate future additions to PartMC

» freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

» dependency version pinning with git submodules: PartMC (F), CAMP (C/F), json (C++),
pybind1l (C++), json-fortran (F), netCDF (C/F), SUNDIALS (F/C), SuiteSparse (C), ...
& backports of C++-20 features to C++17 (multilinux!): span, string_view, optional

solving the challenges
» written in C/Fortran/C++ as C++ bindings to PartMC intetrnals (derived types),
Python bindings generated using pybind11
» three-language build automation with CMake, test automation with pytest, Cl workflows

» JSON-based reimplementation of PartMC "spec-file” i/o module
(unmodified code of PartMC uses original API)
~» minimising effort to accommodate future additions to PartMC

» freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

» dependency version pinning with git submodules: PartMC (F), CAMP (C/F), json (C++),
pybind1l (C++), json-fortran (F), netCDF (C/F), SUNDIALS (F/C), SuiteSparse (C), ...
& backports of C++-20 features to C++17 (multilinux!): span, string_view, optional

» all dependencies (incl. Fortran and C++ runtimes) statically linked (single-file install)

=] & - = E DA™ 13/25

user perspective: Fortran (PartMC)

c: Fortran code d: aero_dist.dat file (for Fortran code)
program main
use pmc_spec_file
use pmc_aero_data
use pmc_aero_mode
use pmc_aero_dist
use pmc_aero_state

mode_name cooking

mass_frac cooking_comp.dat
diam_type geometric
mode_type log_normal
num_conc 3.2e9 # (#/m"3)
geom_mean_diam 8.64e-9 # (m)
N 1og10_geom_std_dev 0.28
implicit none - -
mode name diesel
mass_frac diesel_comp.dat
diam type geometric
mode_type log_normal
num_conc 2.9e9 # (#/m"3)
geom_mean_diam 5e-8
1og10_geom std_dev 0.24

type(spec_file_t) :: f_aero_data, f_aero_dist
type(aero_data_t) :: aero_data
type(aero_dist_t) :: aero_dist
type(aero_state_t) aero_state

integer, parameter :: n_part = 100

integer n_part_add
real(kind=dp), dimension(n_part)

num_concs, masses

call spec_file open("aero data.dat”, £ aero data)
call spec_file read aero data(f aero_data, aero_data)

G EECRLAIO CRERCR Cere AHey) : cooking_comp.dat file (for Fortran code)
call spec_file_open("aero_dist.dat”, f_aero_dist) "‘ propoctiol

call spec_file read aero_dist(f aero_dist, aero_data, aero_dist) °C i
call spec_file_close(f_aero_dist)

call aero_state_zero(aero_state)
call fractal set_spherical(aero_datatfractal)

call aero_state_set_weight(aero_state, aero_data, & f: diesel_ comp.dat file (for Fortran code)
AERO_STATE_WEIGHT NUMMASS_SOURCE) # proportion

call aero_state_set n_part ideal(aero_state, dble(n_part)) oc 0.3

call aero_state_add_aero_dist_sample(aero_state, aero_data, & BC 0.7

aero_dist, 1d0, 0d0, .true., .true., n_part_add)

num_concs = aero_state_num_concs(aero_state, aero_data)
masses = aero_state_masses(aero_state, aero_data)
print *, dot_product(num concs, masses), "# kg/m3"

end

user perspective: Python (PyPartMC)

a: Python code (with embedded data)

import numpy as np

import PyPartMC as ppmc
from PyPartMC import si

aero_data = ppmc.AeroData((

[density, ions in solution, molecular weight, kappa]
{ [1000 *si.kg/si.m**3, 0, le-3 *si.kg/si.mol, 0.001]},
an [1800 *si.kg/si.m**3, 0, le-3 *si.kg/si.mol, 0]},

))

aero_dist = ppmc.AeroDist(
aero_data,
84

"cooking”: {

[{"oc"z [11}1,
"geometric",
log_normal”,

¥ 3200 / si.cm**3,
"geom mean_diam": 8.64 * si.nm,
"1og10_geom_std_dev": 0.28,

}
T
{
[{"oc"z [0.31}, {"BC": [0.71}1,
"geometric”,
: "log normal®,
¥ 2900 / si.cm**3,
"geom_mean_diam": 50 * si.nm,
"log10_geom_std_dev": 0.24,
}
.

n_part = 100

aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source")
aero_state.dist_sample(aero_dist)

print(np.dot(aero_state.masses, aero_state.num_concs), "# kg/m3")

user perspective: Python (PyPartMC) & Julia (via PyCall jl

b: Julia code (with embedded data)

a: Python code (with embedded data)

import numpy as np

import PyPartMC as ppmc
from PyPartMC import si

aero_data = ppmc.AeroData((

[density, ions in solution, molecular weight,
{ [1000 *si.kg/si.m**3, 0, le-3 *si.kg/si.mol,
an [1800 *si.kg/si.m**3, 0, le-3 *si.kg/si.mol,
))
aero_dist = ppmc.AeroDist(
aero_data,
84

.

"cooking”: {

[{"oc": [11}1,
"geometric",
log_normal”,

¥ 3200 / si.cm**3,
"geom mean_diam": 8.64 * si.nm,
"1og10_geom_std_dev": 0.28,

[{"oc": [0.3]}, {"BC": [0.71}],
"geometric",

: "log normal®,

¥ 2900 / si.cm**3,
"geom_mean_diam": 50 * si.nm,
"log10_geom_std_dev": 0.24,

n_part = 100

aero_state = ppmc.AeroState(aero_data, n_part,

aero_state.dist_sample(aero_dist)

print(np.dot(aero_state.masses, aero_state.num_concs),

kappa]
0.001]},

01},

"nummass_source")

"# kg/m3")

using Pkg
Pkg.add("Pycall”)

using PyCall
ppmc = pyimport ("PyPartMC")

si = ppme["si"]

aero_data = ppmc.AeroData((

(density, ions in solution, molecular weight, kappa)

Dict("oc"
Dict("BC"
))

(1000 * si.kg/si.m"3, 0,
(1800 * si.kg/si.m"3, 0,

aero_dist = ppmc.AeroDist(aero_data,
Dict(
"cooking" => Dict(
"mass_frac

"geometric",
"log_normal",
num_conc” => 3200 / si.cm"3,

(

le-3 * si.kg/si.mol, 0.001)),
le-3 * si.kg/si.mol, 0))

> (Dict("0C" => (1,)),),

"geom_mean_diam" => 8.64 * si.nm,

"1og10_geom_std_dev" => .28,
)

Ve

Dict(
“diesel" => Dict(

"geometric",
"log_normal",
num_conc” => 2900 / si.cm"3,
"geom mean_diam" => 50 * si.nm,
"1og10_geom_std_dev" => .24,

)
))

n_part = 100

> (Dict("0OC" => (.3,)), Dict("BC" => (.7,))),

aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source")

aero_state.dist_sample(aero_dist)

print(aero_state.masses'aero_state.num_concs, "# kg/m3")

user perspective: Matlab (built-in Python bridge)

ppmc = py.importlib.import_module('PyPartMC');
i = py.importlib.import module('PyPartMC').si;

aero_data = ppmc.AeroData(py.tuple({ ...
py.dict(pyargs("0C", py.tuple({1000 * si.kg/si.m"3, 0, le-3 * si.kg/si.mol, 0.001}))),
py.dict(pyargs("BC", py.tuple({1800 * si.kg/si.m"3, 0, le-3 * si.kg/si.mol, 6}))) ...
H);

aero_dist = ppmc.AeroDist(aero_data, py.tuple({ ...
py.dict(pyargs(
'cooking". py.dict(pyargs(...
"mass_frac", py.tuple({py. dlct(pyargs(0c", py.tuple({1})))}), ...
"diam_type", "geometnc"
“mode_type”, "log normal”, ...
“num_conc", 3200 / si.cm"3,
“geom_mean_diam", 8.64 * si.nm,
"logl0_geom std_dev", .28

1), ..
py.dict(pyargs(...
"diesel”, py.dict(pyargs(...
"mass_frac", py.tuple({ ...
py.dict(pyargs("0C", py.tuple({.3}))), ...
py.dict(pyargs("BC", py.tuple({.7}))), ...

"diam_type", "geometric"

“mode_type", "log_normal"

“num_conc”, 2900 / si.cm"3,

“geom_mean diam", 50 * si.nm,

“1og10_geom std dev”, .24 ...
)) ISR

) .
)

n_part = 100;

aero_state = ppmc.AeroState(aero _data, n_part, "nummass source");
aero_state.dist_sample(aero_dist);

masses = cell(aero_state.masses());

num_concs = cell(aero_state.num _concs);

fprintf('%sg # kg/m3\n', dot([masses{:}], [num_concs{:}]))

ulia

Matiab Python

crr

[

[t v | Pybon e

o+ user code

pubindLi-generated
PyPartuC modu

c

CAMP C code

Speckile-C

PyPanMC-Cr+

APEN G4

17/25

PyPartMC API docs: https://open-atmos.github.io/PyPartMC/

PyPartMC API documentatic X +

S c @ © & https:/fopen-atmos.github.io/PyPartMC/

Index Module PyPartMC

PyPartMC is a Python interface to PartMC.

Functions
condense_equilib_particles
pow2_above

run,part .
Functions

def condense_equilib_particles(arg0: EnvState, argl: AeroData,

AeroData arg2: Aerostate)
AeroState Call condense_equilib_particle() on each particle in the aerosol to ensure that every
EnvState particle has its water content in equilibrium.
GasData def pow2_above(arg0: int) -> int
GasState Return the least power-of-2 that is at least equal to n.
RunPartOpt
def run_part(arg0: Scenario, argl: EnvState, arg2: Aerobata, arg3: AeroState,
Scenario

arga: Gasbata, argS: GasState, argé: RunPartopt)

Do a particle-resolved Monte Carlo simulation.

Classes
class AeroData (...)

Aerosol material properties and associated data.

The data in this structure is constant, as it represents physical quantities that cannot

https://open-atmos.github.io/PyPartMC/

PyPartMC: context / statement of need

PyPartMC: goals and status

PyPartMC: design & implementation outline

PyPartMC: demo

PyPartMC: summary

«O» «Fr o«

DA 19/25

https://github.com/open-atmos/PyPartMC

DA 20/25

https://github.com/open-atmos/PyPartMC

PyPartMC: context / statement of need

PyPartMC: goals and status

PyPartMC: design & implementation outline

PyPartMC: demo

PyPartMC: summary

«O» «Fr o«

DA 21/25

& PyPartmc

PyPartMC firsts (?):

A
& PyPartmc
e et
PyPartMC firsts (?):
» using PartMC on Windows

& PyPartmc
e e 4
PyPartMC firsts (?):
» using PartMC on Windows
» using pybindl1 for Fortran

PyPartMC firsts (?):

©PyPartvg
» using PartMC on Windows

» using pybindl1l for Fortran

» using pybindll-generated packages from within Matlab

D QC

22/25

PyPartMC firsts (?):

& PyPartmc

» using PartMC on Windows

» using pybindl1l for Fortran

» using pybindll-generated packages from within Matlab
PyPartMC [fun] facts:

» architecture entirely contingent on PartMC's modular/OOP design (and tests!)

A
& PyPartmc
e e 4
PyPartMC firsts (?):
» using PartMC on Windows

» using pybindl1l for Fortran

» using pybindll-generated packages from within Matlab
PyPartMC [fun] facts:

» architecture entirely contingent on PartMC's modular/OOP design (and tests!)
» 500+ lines of CMake code (compilation, static linkage of dependencies)

PyPartMC firsts (?):

©PyPartvg
» using PartMC on Windows

» using pybindl1l for Fortran

» using pybindll-generated packages from within Matlab
PyPartMC [fun] facts:

» architecture entirely contingent on PartMC's modular/OOP design (and tests!)
» 500+ lines of CMake code (compilation, static linkage of dependencies)
» Conda packaging tricky due to static linkage

D QC

22/25

&G PyPartmc
e e 4
PyPartMC firsts (?):
» using PartMC on Windows
» using pybindl1l for Fortran
» using pybindll-generated packages from within Matlab

PyPartMC [fun] facts:

» architecture entirely contingent on PartMC's modular/OOP design (and tests!)
» 500+ lines of CMake code (compilation, static linkage of dependencies)
» Conda packaging tricky due to static linkage

» no automatic dissemination of universal binaries for macOS yet (gfortran limitation)

=] 5 = = E DA 2/25

&G PyPartmc
e e 4
PyPartMC firsts (?):
» using PartMC on Windows
» using pybindl1l for Fortran
» using pybindll-generated packages from within Matlab

PyPartMC [fun] facts:
» architecture entirely contingent on PartMC's modular/OOP design (and tests!)
» 500+ lines of CMake code (compilation, static linkage of dependencies)
» Conda packaging tricky due to static linkage
» no automatic dissemination of universal binaries for macOS yet (gfortran limitation)

» Matlab bridge has issues, but Matlab Github Actions highly appreciated!

DA 22/25

A
&G PyPartmc
e e 4
PyPartMC firsts (?):
» using PartMC on Windows

» using pybindl1l for Fortran
» using pybindll-generated packages from within Matlab

PyPartMC [fun] facts:

» architecture entirely contingent on PartMC's modular/OOP design (and tests!)
500+ lines of CMake code (compilation, static linkage of dependencies)
Conda packaging tricky due to static linkage

Matlab bridge has issues, but Matlab Github Actions highly appreciated!

|
>
» no automatic dissemination of universal binaries for macOS yet (gfortran limitation)
>
» SoftwareX review: actually also concerned code/installation

=] 5 = = E DA 2/25

A
&G PyPartmc
e e 4
PyPartMC firsts (?):
» using PartMC on Windows

» using pybindl1l for Fortran
» using pybindll-generated packages from within Matlab

PyPartMC [fun] facts:

» architecture entirely contingent on PartMC's modular/OOP design (and tests!)
500+ lines of CMake code (compilation, static linkage of dependencies)
Conda packaging tricky due to static linkage
no automatic dissemination of universal binaries for macOS yet (gfortran limitation)
Matlab bridge has issues, but Matlab Github Actions highly appreciated!

SoftwareX review: actually also concerned code/installation

vVvyVvyVvyYyvyy

exception propagation from C++ through Fortran to C++ compiler dependent

=] - E DA 2/25

[2 PyPartmc

PyPartMC enables:

PyPartMC enables:

[2 PyPartmc

» single-command (pip) install on Windows, macOS & Linux

PyPartMC enables:

LY

G PyPartmvc
e e 4

» single-command (pip) install on Windows, macOS & Linux

» using unmodified PartMC internals from Python, Julia, Matlab... and C++

PyPartMC enables:

LY

©PyPartmc
e e 4

» single-command (pip) install on Windows, macOS & Linux

» using unmodified PartMC internals from Python, Julia, Matlab... and C++

» using PartMC within test suites of other Python packages (as is the case of PySDM)

DA 23/25

PyPartMC enables:

LY

©PyPartmc
e e 4

» single-command (pip) install on Windows, macOS & Linux

» using unmodified PartMC internals from Python, Julia, Matlab... and C++

» using PartMC within test suites of other Python packages (as is the case of PySDM)

» leveraging Python binary dissemination system for PartMC and dependencies (static linkage)

©PyPartvg
PyPartMC enables:
» single-command (pip) install on Windows, macOS & Linux
» using unmodified PartMC internals from Python, Julia, Matlab... and C++
» using PartMC within test suites of other Python packages (as is the case of PySDM)
» leveraging Python binary dissemination system for PartMC and dependencies (static linkage)

» encapsulating simulation setup/input within one single-language file (e.g., for paper review)

& PyPartmc

PyPartMC enables:

>

vV vV v v VY

single-command (pip) install on Windows, macOS & Linux

using unmodified PartMC internals from Python, Julia, Matlab... and C++

using PartMC within test suites of other Python packages (as is the case of PySDM)
leveraging Python binary dissemination system for PartMC and dependencies (static linkage)
encapsulating simulation setup/input within one single-language file (e.g., for paper review)

extending PartMC simulation /diagnostics logic with Python code (optics with PyMieScatt)

& PyPartmc

PyPartMC enables:

>

vV v v v v Vv

single-command (pip) install on Windows, macOS & Linux

using unmodified PartMC internals from Python, Julia, Matlab... and C++

using PartMC within test suites of other Python packages (as is the case of PySDM)
leveraging Python binary dissemination system for PartMC and dependencies (static linkage)
encapsulating simulation setup/input within one single-language file (e.g., for paper review)
extending PartMC simulation /diagnostics logic with Python code (optics with PyMieScatt)

streamlined workflows for generating simulation ensembles (no need for input text files!)

& PyPartmc

PyPartMC enables:

>

vV v v v v v Vv

single-command (pip) install on Windows, macOS & Linux

using unmodified PartMC internals from Python, Julia, Matlab... and C++

using PartMC within test suites of other Python packages (as is the case of PySDM)
leveraging Python binary dissemination system for PartMC and dependencies (static linkage)
encapsulating simulation setup/input within one single-language file (e.g., for paper review)
extending PartMC simulation /diagnostics logic with Python code (optics with PyMieScatt)
streamlined workflows for generating simulation ensembles (no need for input text files!)

offering users (students) a single-language familiar environment (Colab, ARM JupyterHub)

=] & - = E DA™ 23/25

- ASR
£ g) Atmospheric
3 System Research

ABOUT ~ SCIEANCE PROJECTS ~ PUBLICATIONS ~

Search asr.science.energy. Q
u:s.oePARTMENTOF | Office of
e ENERGY Science

MEETINGS ~ NEWS ~

Research Highlights Priority Research Areas

SCIENCE > RESEARCH HIGHLIGHTS
PyPartMC: Removing barriers in aerosol modeling

Submitter
Riemer, Nicole — University of lllinois Urbana-Champaign
West, Matthew — University of lllinois at Urbana-Champaign

Area of research
Aerosol Processes

Journal Reference

D'Aquino Z, S Arabas, J Curtis, A Vaishnav, N Riemer, and M West. 2024. "PyPartMC: A Pythonic interface to a particle-resolved, Monte Carlo aerosol simulation

framework." SoftwareX, 25, 101613, 10.1016/j.s0ftx.2023.101613.

Science

PartMC is a powerful ope tool for aerosol si i However, it requires knowledge of shell and CMake, C and Fortran compilers, and installation and
configuration of several C and Fortran dependencies. This is a significant hurdle for those with little experience in computation. PyPartMC offers a single-step
installation process of PartMC and all dependencies through the pip Python package manager on Linux, macOS, and Windows. It provides streamlined access to the
unmodified and versioned Fortran internals of the PartMC codebase from both Python and other interoperable environments (e.g., Julia through PyCall).

Impact

« Ability to run PartMC simulations in the cloud, including using the ARM Jupyter Hub.

Atmospheric
System Research
AL

NAL SCIENCE CENTRE

DA 25/25

https://pypi.org/p/PyPartMC
https://github.com/open-atmos/PyPartMC
https://doi.org/10.1016/j.softx.2023.101613

acknowledgements

LA 4 Atmospheric
=+ System Research

N NATIONAL SCIENCE CENTRE
N FOLAND

Thank you for your attention!

pypi.org/p/PyPartMC
github.com /open-atmos/PyPartMC
doi:10.1016/j.s0ftx.2023.101613

https://pypi.org/p/PyPartMC
https://github.com/open-atmos/PyPartMC
https://doi.org/10.1016/j.softx.2023.101613

	PyPartMC: context / statement of need
	PyPartMC: goals and status
	PyPartMC: design & implementation outline
	PyPartMC: demo
	PyPartMC: summary

