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cloud µ-physics models in 1910s?



Smoluchowski & Rudzki

(Smoluchowski 1918,

DOI:10.1515/zpch-1918-9209)

(available at U. Mainz Zentralbibliothek)
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“Principles of Meteorology” book (1917)
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Rudzki 1917: Principles of Meteorology

http://pbc.gda.pl/dlibra/docmetadata?id=18434 (+ Google Translate)
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modelling coagulation: SCE & SDM



Smoluchowski’s coagulation equation (SCE)

droplet concentration: c(x, t) : R+ × R
+
→ R

+

collision kernel: a(x1, x2) : R
+
× R

+
→ R

+

ċ(x) =
1

2

ˆ x

0
a(y, x− y)c(y)c(x− y)dy −

ˆ

∞

0
a(y, x)c(y)c(x)dy

droplet concentration: ci = c(xi)

ċi =
1

2

i−1∑

k=1

a(xk, xi−k)ckci−k −
∞∑

k=1

a(xk, xi)ckci
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cloud droplet collisional growth
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“Cloud and ship. Ukraine, Crimea, Black sea, view

from Ai-Petri mountain”

(photo: Yevgen Timashov / National Geographic)
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“Cloud and ship. Ukraine, Crimea, Black sea, view

from Ai-Petri mountain”

(photo: Yevgen Timashov / National Geographic)

“Grid cells in a global climate model and a

large-eddy simulation of shallow cumulus clouds at 5

m resolution”

(fig. from Schneider et al. 2017)
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Eulerian vs. Lagrangian microphysics
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Lagrangian microphysics: early works (0D)
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Eulerian vs. Lagrangian microphysics
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Eulerian vs. Lagrangian microphysics
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Eulerian vs. Lagrangian microphysics
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Lagrangian microphysics: early works (3D)
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Eulerian vs. Lagrangian microphysics: a (probabilistic) breakthrough

pre-2009:

„advantage of the full-moving size structure is

that core particle material is preserved during

growth ... second advantage ... it eliminates

numerical diffusion ... [but] nucleation,

coagulation ... cause problems ... the

full-moving structure is not used in

three-dimensional models”a

„the use of a fixed grid allows for an easy

implementation of collision processes, which is

not possible for a moving grid (Lagrangian)

approach”b

a
Jacobson 2005: Fundamentals of Atmospheric Modeling
b
Simmel & Wurzler 2006: Condensation and activation in sectional cloud microphysical models
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Shima 2009: Monte-Carlo particle-based
collision algorithm for cloud simulations

Super-droplet simulation of a shallow convective cloud

(figure: Shima et al. 2009, QJRMS)
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SCE (näıve impl) SDM

method type

mean-field, deterministic Monte-Carlo, stochastic

considered pairs

all (i,j) pairs
random set of nsd/2 non-overlapping pairs,

probability up-scaled by (n2sd − nsd)/2 to nsd/2 ratio

computation complexity

O(n2sd) O(nsd)

14
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method type

mean-field, deterministic Monte-Carlo, stochastic
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all (i,j) pairs
random set of nsd/2 non-overlapping pairs,

probability up-scaled by (n2sd − nsd)/2 to nsd/2 ratio

computation complexity

O(n2sd) O(nsd)

collisions triggered

every time step by comparing probability with a random number

collisions
colliding a fraction of ξ[i], ξ[j] collide all of min{ξ[i], ξ[j]} (”all or nothing”)

interpretation

concentration “ci” in size bin “i”
besides ci, each “particle” i carries other physicochemical attributes, e.g.

position (xi, yi, zi)
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super-particles as an alternative to bulk or bin µ-phyics
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super-particles as an alternative to bulk or bin µ-phyics
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PySDM: SDM implementation for

reproducible research& active learning
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❼ easy to reuse: code (100% Python), documentation, examples/tutorials (Jupyter),

extensibility (modular, high test coverage), interoperability (other languages, i/o),

leveraging modern hardware (GPUs, multi-core CPUs)

KPI: user feedback & multi-institutional contributions

❼ accessibility: seamless Linux/macOS/Windows Intel/ARM installation (pip)

KPI: continuous integration on all targeted platforms

❼ curation: open licensing (GPL), public versioned development (Github), archival (Zenodo)

KPI: instant and anonymous execution of arbitrary version in commodity environments
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https://open-atmos.github.io/PySDM

Jupyter notebook setting up and running the above

PySDM simulation and generating the visualisation

using Paraview

Documentation

What is PySDM?

PySDM is a package for simulating the dynamics of population of particles

undergoing diffusional and collisional growth (and breakage) . The package

features a Pythonic high-performance (multi-threaded CPU & CUDA GPU)

implementation of the Super-Droplet Method (SDM) Monte-Carlo algorithm  for

representing collisional growth (Shima et al. 2009), hence the name. It is

intended to serve as a building block for simulation systems modelling fluid

flows involving a dispersed phase , with PySDM being responsible for

representation of the dispersed phase. Currently, the development is focused

on atmospheric cloud physics applications , in particular on modelling the

dynamics of particles immersed in moist air using the particle-based (a.k.a.

super-droplet) approach to represent aerosol/cloud/rain microphysics. The key

goal of PySDM is to enable rapid development and independent reproducibility

of simulations in cloud microphysics while being free from the two-language

barrier commonly separating prototype and high-performance research code.

PySDM ships with a set of examples reproducing results from literature and

serving as tutorials. The animation shown here depicts a flow-coupled

simulation in which the flow is resolved using PySDM's sibling project:

PyMPDATA. The examples include also single-column setups (with PyMPDATA

used for advection) as well as adiabatic cloud parcel model setups (with

PySDM alone sufficient to constitute a microphysics-resolving cloud parcel

model in Python ).
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Monte-Carlo collisional breakup (constant super-droplet number formulation)
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Tim Lüttmer @uni-mainz.de ice diffusional growth, homogeneous nucleation, . . .

23



Piotr Bartman @uj.edu.pl code architecture, adaptive time-stepping, . . .

Emily de Jong @caltech.edu (now @llnl.gov) collisional breakup, . . .

Clare Singer @caltech.edu (now @colorado.edu) surfactants, . . .

Agnieszka Żaba @agh.edu.pl isotopic fractionation, . . .

Emma Ware @agh.edu.pl (@ucdavis.edu) SDM adaptivity, spectral sampling, . . .

Agnieszka Makulska @uw.edu.pl Ostwald ripening, . . .

Grzegorz Łazarski @uj.edu.pl aqueous chemistry (Hoppel gap), . . .

Jatan Buch @columbia.edu cloud seeding, . . .

Jason Barr @washington.edu coagulation kernels, . . .

Sajjad Azimi & Anna Jaruga @caltech.edu calibration of bulk model using PySDM, . . .
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particle-based modelling of

immersion freezing



Monte-Carlo SCE alternatives: e.g., SDM by Shima et al.

Shima et al. 2009 (doi:10.1002/qj.441): warm-rain
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❼ freezing rate (temperature)?
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Abstract Snomax® is often used as a surrogate for biological ice nucleating particles (INPs) and has recently

been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion

freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability
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Vonnegut 1948 (J. Colloid Sci.)

Vali 2014 (ACP)

”Interpretations of the experimental results

face considerable difficulties ... two separate

ways of interpreting the same observations; one

assigned primacy to time the other emphasized

the temperature-dependent impacts of the

impurities ... dichotomy – the stochastic and

singular models”
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Marshall et al. 1961 (Nubila 4:1)

http://cma.entecra.it/Astro2_sito/doc/Nubila_1_1961.pdf
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INAS: I(T ) = ns(T ) = exp(a · (T − T0◦C) + b)
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INAS: I(T ) = ns(T ) = exp(a · (T − T0◦C) + b)

experimental ns(T ) fits: e.g., Niemand et al. 2012
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freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.05)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.05)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.25)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.5)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(1)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(1.5)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(2)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(2.5)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(2.5)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(2)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(1.5)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(1)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.5)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.25)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



freezing temperature Tfz as a super-particle attribute: initialisation

INAS P(Tfz,A) sampling (A lognormal)

230 235 240 245 250
freezing temperature [K]

0

1

2

3

4

5

in
so
lu
bl

e 
su

rf
ac

e 
[
m

2 ]

g=exp(0.05)

10 3

10 2

10 1

100

pd
f 

[K
1
m

2 ]

31



singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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singular: INAS Tfz as attribute; initialisation by random sampling from P (Tfz, A) with lognormal A
(A is not an attribute, initialisation only); freezing if T (t) < Tfz(t = 0)

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P (Jhet(T (t)))
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theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)

Poisson counting process with rate r:

P
∗
(k events in time t) =

(rt)k exp(−rt)

k!

P (one or more events in time t) = 1− P
∗
(k = 0, t)

ln(1− P ) = −rt

introducing Jhet(T ), T (t) and INP surface A:

ln (1−P (A, t)) = −A

t
ˆ

0

Jhet(T (t
′)) dt′

︸ ︷︷ ︸

I(T )

INAS: I(T ) = ns(T ) = exp(a · (T − T0◦C) + b)

experimental ns(T ) fits: e.g., Niemand et al. 2012
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INAS: I(T ) = ns(T ) = exp(a · (T − T0◦C) + b)

experimental ns(T ) fits: e.g., Niemand et al. 2012

for a constant cooling rate c = dT/dt:
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′
)dT
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dns(T )
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= a · ns(T ) = −

1
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experimental fits: INAS ns (Niemand et al. ’12)
ABIFM Jhet (Knopf & Alpert ’13)
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immersion freezing: singular vs. time-dependent in flow-coupled simulation
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immersion freezing: singular vs. time-dependent in flow-coupled simulation

16+16 super-particles/cell for INP-rich + INP-free particles

Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg=0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers
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t = 600 s t = 1800 s t = 6000 s

(a)

(b)

(c)
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new paper in JAMES using PySDM’s singular & time-dependent immersion freezing

 singular model not robust to flow regimes

 working with Tim on extending to ice growth
35



PySDM@Kraków funding:

Mainz visit funding:

36



PySDM@Kraków funding:

Mainz visit funding:

36



PySDM@Kraków funding:

Mainz visit funding:

6-month postdoc position at AGH available

36



PySDM@Kraków funding:

Mainz visit funding:

6-month postdoc position at AGH available

AMS Annual Meeting @Houston (25-29 Jan 2026) session

36



37



PySDM@Kraków funding:

Mainz visit funding:

6-month postdoc position at AGH available
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Thank you for your attention!
sylwester.arabas@agh.edu.pl
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