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two-way interactions:
- aerosol characteristics influence cloud microstructure
- cloud processes influence aerosol size and composition




Aerosol-cloud interactions: p-physics models
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Particle-based p-physics + prescribed-flow: model state
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Particle-based p-physics + prescribed-flow: spin-up
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Particle-based p-physics + prescribed-flow: spin-up

Time: 480 s (spin-up fill 600.0 s)

— 10 @ —250Q
© €
5 € —200 8
2 9]
= -~ 150 £
2 E 2
5 100g
S =
~057 0 ©




Particle-based p-physics + prescribed-flow: spin-up
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Particle-based p-physics + prescribed-flow: spin-up
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Shima et al. '20 particle-based mixed-phase p-physics

Shima, Sato, Hashimoto & Misumi 2020 (GMD):
Predicting the morphology of ice particles in deep convection using the super-droplet method

Figure 1. Typical relization o CTRL.clou spatialsructure at = 2040, 2460, 3000, 4200, and 3400s. The mixing i of cloud water
rainwater, clot aupel, and snow aggregates are plotted in fading white, yellow, blue, red, and green, respectively. The symbols indic:
examples of us ic predicted ice particles (Sects. 7.3 and 9.1). See also Movie 1 in the video u\)plemenl
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Immersion freezing and other ice crystal formation pathways in clouds
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Immersion freezing: bacteria and the Olympics

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025251

Key Points:

« Very ice active Snomax protein
aggregates are fragile and their ice
nucleation ability decreases over
months of freezer storage

« Partitioning of ice active protein
aggregates into the immersion oil
reduces the droplet's measured
freezing temperature

The unstable ice nucleation properties of Snomax®
bacterial particles
Michael Polen, Emily Lawlis', and Ryan C. Sullivan'

'Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract snomax®is often used asa surrogate for biological ice nucleating particles (INPs) and has recently
been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion
freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability
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Immersion freezing and other ice crystal formation pathways in clouds
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Szakall et al. 2021, ACP 21: isothermal experiments
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Marshall et al. 1961, Nubila 4(1)

Heterogeneous Nucleations

is a Stochastic Process
by

Ja S MUAL RIS THEA AL

MeGill University, Montreal, Canad.

Presented at the International Congress on the Physics of Clouds (Hailstorms)
al Verona 9-13 August 1960,




Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)

Poisson counting process with rate r:

In(l—P)=—rt

introducing Jhet(T), T(t) and INP surface A:

In(1=P(A, ) = — /Jhet(T(t’)) dt’
0

—_— ——
INAS:

ns( Tt )

ns(Te,) = exp(a- (Te, — Tooc) + b)
experimental ns(T) fits: e.g., Niemand et al. 2012
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/, photo: KIT/Ottmar Mdhler)
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/, photo: KIT/Ottmar Mdhler)

AIDA cooling rate: ca. 0.5K/min


https://www.imk-aaf.kit.edu/

(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)

Poisson counting process with rate r:

In(l—P)=—rt

introducing Jhet(T), T(t) and INP surface A:

In(1=P(A, ) = — /Jhet(T(t’)) dt’
0

—_— ——
INAS:

ns( Tt )

ns(Te,) = exp(a- (Te, — Tooc) + b)
experimental ns(T) fits: e.g., Niemand et al. 2012

A

16/27



Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)
(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poisson counting process with rate r:

for a constant cooling rate ¢ = dT /dt:

In(1 = P(A, t ~ Tp,)) = —é /T:’m Ihet(T)IT! = —A - ny(Ts,)

In(l1-P)=—-rt
introducing Jhet(T), T(t) and INP surface A
t
In(1—P(A, 1)) = —A[ Ihee(T(t")) dt’
0
ns(Tez)

INAS:  ng(Ts,) =exp(a- (Te, — Tooc) + b)

experimental ng(T) fits: e.g., Niemand et al. 2012

wQ

e

16/27



Vali 2014 (ACP)

“Interpretations of the experimental results face considerable difficulties ... two separate ways of interpreting
the same observations; one assigned primacy to time the other emphasized the temperature-dependent impacts
of the impurities ... dichotomy — the stochastic and singular models”
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Particle-based freezing: singular (Shimaetal.)

singular: INAS Tg, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A

freezing if Tambient(t) < szlsampled at t=0
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Particle-based freezing: singular (Shima et al.)

singular: INAS Tg, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tt
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Particle-based freezing: singular (Shima et al.)

singular: INAS Tg, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tt
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Particle-based freezing: singular (Shima et al.)

singular: INAS Tg, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tt

250 __
[ 245 -

240

[
[ 230

N
w
(&

Tt [K] (particles

oy=exp(1.25)

250

N
&

freezing temperature [K]
w
R
8

»
r

&

230

insoluble surface [um?]

107 107 107!
pdf (K™ um~2]

2




Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS Tg, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Telsampled at t=0

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A - Jhet( Tambient (£)))
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled at t=0
time-dependent: A as attribute (randomly sampled from the same lognormal)

Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

ogg=exp(0.05)
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled at t=0
time-dependent: A as attribute (randomly sampled from the same lognormal)

Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

ogg=exp(0.25)
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled at t=0
time-dependent: A as attribute (randomly sampled from the same lognormal)

Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

og=exp(0.5)
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—— Monte-Carlo: singular/INAS
—— Monte-Carlo: time-dependent/ABIFM
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Particle-based freezing: singular (Shimaetal.) / time-d

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A

freezing if Tambient(t) < Tilsampled at t=0

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

og=exp(1)
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled at t=0
time-dependent: A as attribute (randomly sampled from the same lognormal)

Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

og=exp(1.5)
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—— Monte-Carlo: singular/INAS
—— Monte-Carlo: time-dependent/ABIFM
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled o

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

0g=exp(2)
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—— Monte-Carlo: singular/INAS
—— Monte-Carlo: time-dependent/ABIFM



Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled o

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

gg=exp(2.5)
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A
freezing if Tambient(t) < Tf2|sampled at t=0
time-dependent: A as attribute (randomly sampled from the same lognormal)

Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

AIDA cooling rate: 0.5 K/min

og=exp(1.5)
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A

freezing if Tambient(t) < Tilsampled at t=0

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

cooling rate: 0.1 K/min AIDA cooling rate: 0.5 K/min
agg=exp(1.5) og=exp(1.5)
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Particle-based freezing: singular (Shimaetal.) / time-dependent (this work)

singular: INAS T, as attribute; initialisation by random sampling from P(A, T¢,) with lognormal A

freezing if Tambient(t) < Tilsampled at t=0

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A - Jhet( Tambient (t)))

cooling rate: 0.1 K/min AIDA cooling rate: 0.5 K/min cooling rate: 2.5 K/min
agg=exp(1.5) og=exp(1.5) gg=exp(1.5)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)
(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poisson counting process with rate r:

for a constant cooling rate ¢ = dT /dt:

In(1 = P(A, t ~ Tp,)) = —é /T:’m Ihet(T)IT! = —A - ny(Ts,)

In(l1-P)=—-rt
introducing Jhet(T), T(t) and INP surface A
t
In(1—P(A, 1)) = —A[ Ihee(T(t")) dt’
0
ns(Tez)

INAS:  ng(Ts,) =exp(a- (Te, — Tooc) + b)

experimental ng(T) fits: e.g., Niemand et al. 2012



(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poissonian model of freezing & Ice Nucleation Active Sites (INAS)
theory (in modern notation)

Poisson counting process with rate r:

for a constant cooling rate ¢ = dT /dt:
In(1— P(A, t ~ Tg)) = A /Tmt Ihet(T)dT" = —A - ny(Ty,)
cJTy
—lJ (T) = dne(T) _ a-ng(T)
¢ het = aT = s
In(l1-P)=—-rt
introducing Jhet(T), T(t) and INP surface A
t
In(1—P(A, 1)) = —A[ hee( T(t')) dt’
0
—_——
ns(sz)
INAS: ns(Ts,) = exp(a- (T, — Tooc) + b)

experimental ng(T) fits: e.g., Niemand et al. 2012



Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation) for a constant cooling rate ¢ = dT /dt:

(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61) In(1 — P(A, t ~ Ty)) = A /To+cf I TYIT! = —A - e(Te)
c TD

Poisson counting process with rate r: dng(T)

dT

1
— (T = =a-ns(T)

experimental fits: INAS ns (Niemand et al. "12)
ABIFM Uyt (Knopf & Alpert '13)

In(l - P) =—rt 108
introducing Jhet(T), T(t) and INP surface A: fmu
t E 109
&
In(1—P(A 1)) = —A[ hee(T(t)) dt' S
n
—0 P é.“. 10° = ABIFM Jher/C (lllite)
= —— ABIFM Jpe/c (M=28.14 c=-2.92)
ns(T,) == INAS: —dny(T)/dT = —a-ny(T) (dust)
255.0 252.5 250.0 247.5 245.0 242.5 240.0 237.5 235.0
INAS: ns(Ts,) = exp(a- (T, — Tooc) + b) temperature [K]

experimental ng(T) fits: e.g., Niemand et al. 2012




Poissonian model of freezing & lce Nucleation

ive Sites (INAS)

theory (in modern notation)
(Bigg '53, Langham & Mason '58, Carte '59, Marshall '61)

Poisson counting process with rate r:

In(l1-P)=—-rt
introducing Jhet(T), T(t) and INP surface A:

In(1—P(A, £)) A/ e dt’
0
N
ns(sz)

INAS: ns(Ts,) = exp(a- (T, — Tooc) + b)

experimental ng(T) fits: e.g., Niemand et al. 2012

for a constant cooling rate ¢ = dT /dt:

A [Totct , ,
In(1 = PA £ o)) = =2 [0 (T = —A (T
0

dns(T)
dT

1
— (T = =a-ns(T)

experimental fits: INAS ns (Niemand et al. "12)

1013

10t

10°

107

Jnet(TV/c = = dng(T)/AT [K~*m~?]

10°

ABIFM Uyt (Knopf & Alpert '13)

—— ABIFM Jhet/c (lllite)
—— ABIFM Jhet/c (M=28.14 ¢=-2.92)
= = INAS: —dng(T)/dT = — a - ng(T) (dust)

255.0 252.5 250.0 247.5 245.0 242.5 240.0 237.5 235.0
temperature [K]

cf. Vali & Stansbury '66; modified singular model (Vali '94, Murray et al. '11)
but the singular ansatz limitation of sampling T, at t=0 remains
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

for a constant cooling rate ¢ = dT /dt:
A To+ect , ,
in(1 = PA £ o)) = =2 [0 (T =~ (T
0

dns(T)
dT

1
— (T = =a-ns(T)

experimental fits: INAS ns (Niemand et al. "12)
ABIFM Uyt (Knopf & Alpert '13)

1013
. T
Is it a problem?
. X
lg 9
g 10
3
I 107
[
L
E.“. 10° —— ABIFM Jher/c (lllite)
= = ABIFM Jhet/C (M=28.14 ¢=-2.92)
= = INAS: —dny(T)/dT = —a-n(T) (dust)

255.0 252.5 250.0 247.5 245.0 242.5 240.0 237.5 235.0
temperature [K]

cf. Vali & Stansbury '66; modified singular model (Vali '94, Murray et al. '11)
but the singular ansatz limitation of sampling T, at t=0 remains
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Testing different cooling-rate profiles in a box model
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Testing different cooling-rate profiles in a box model
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Testing different cooling-rate profiles in a box model
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Testing three flow regimes and two immersion freezing representations

Wmax = 1/3 m/s

Wmax =~ 1 m/s

Wmax =~ 3 m/s
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Testing three flow regimes and two immersion freezing representations

Wmax = 1/3 m/s

Wmax =~ 1 m/s
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Testing three flow regimes and two immersion freezing representations
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Particle-based p-physics + prescribed-flow: glaciation

Time: 630 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 660 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 690 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 720 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 750 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 780 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 810 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 840 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 870 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 900 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 930 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 960 s (spin-up fill 600.0 s)

— 10 @ —250Q
© €
5 € —200 8
2 9]
= -~ 150 £
2 E 2
5 100g
S =
~057 0 ©

16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 990 s (spin-up fill 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 1020 s (spin-up till 600.0 s)
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Particle-based p-physics + prescribed-flow: glaciation

Time: 1050 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 1080 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 1110 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 1140 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 1170 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Particle-based p-physics + prescribed-flow: glaciation

Time: 1200 s (spin-up till 600.0 s)
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16416 super-particles/cell for INP-rich + INP-free particles
Naer = 300/ cc (two-mode lognormal) ~ Nijyp = 150/L (lognormal, Dy =0.74 um, oz =2.55)
spin-up = freezing off; subsequently frozen particles act as tracers



Testing three flow regimes and two immersion freezing representations
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» range of cooling rates in simple flow (far from 0.5 K/min for AIDA as in Niemand et al. 2012)



Testing three flow regimes and two immersion freezing representations
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> only time-dependent scheme robust across flow regimes (consistent with box model & theory)
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stochastic or deterministic?
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producing an ice crystal, then this temperature (assuming all particles are immersed in drops) can be predicted
from [a power law versus temperature]”
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“Interpretations of the experimental results face considerable difficulties ... two separate ways of interpreting
the same observations; one assigned primacy to time the other emphasized the temperature-dependent impacts
of the impurities ... dichotomy — the stochastic and singular models”

stochastic or deterministic?

DeMott 1990 (J. Appl. Meteorol.)

“If one takes the standard definition of the “threshold temperature” for ice fomation: 1 particle in 10*
producing an ice crystal, then this temperature (assuming all particles are immersed in drops) can be predicted
from [a power law versus temperature]”

common underlying Poissonian model



The impact of aerosol mixing state on immersion freezing:

Insights from classical nucleation theory and particle-resolved simulations
Wenhan Tang , Sylwester Arabas , Jeffrey H. Curtis , Daniel A. Knopf , Matthew West , and Nicole Riemer

Abstract. Immersion freezing, initiated by ice-nucleating particles (INPs) in supercooled aqueous droplets, plays an important
role in the formation of ice crystals within clouds. The efficiency of immersion freezing depends strongly on INP composition
and, crucially, on the mixing state—how chemical species are distributed across the particle population. Here, we quantify the

impact of aerosol mixing state on immersion freezing using a combined theoretical and particle-resolved modeling approach.
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(a): isothermal freezing conditions with —20 °C ‘partMC

(b): constant cooling rate from —10 °C to —30 °C within 10 minutes
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