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Key Points:

• Microphysics is an important

component of weather and climate

models, but its representation in

current models is highly uncertain
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Particle-based µ-physics + prescribed-flow: model state

Lagrangian component

Eulerian component
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Immersion freezing: bacteria and the Olympics

The unstable ice nucleation properties of Snomax®

bacterial particles

Michael Polen1, Emily Lawlis1, and Ryan C. Sullivan1

1Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract Snomax® is often used as a surrogate for biological ice nucleating particles (INPs) and has recently

been proposed as an INP standard for evaluating ice nucleation methods. We have found the immersion

freezing properties of Snomax particles to be substantially unstable, observing a loss of ice nucleation ability

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025251

Key Points:

• Very ice active Snomax protein

aggregates are fragile and their ice

nucleation ability decreases over

months of freezer storage

• Partitioning of ice active protein

aggregates into the immersion oil

reduces the droplet’s measured

freezing temperature

• Caution is warranted in the use of

https://www.reuters.com/markets/commodities/making-snow-stick-wind-challenges-winter-games-slope-makers-2021-11-29/
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Immersion freezing and other ice crystal formation pathways in clouds

Kanji et al. 2017, graphics F. Mahrt, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1

Vonnegut 1948 (J. Colloid Sci.)

https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1
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Szakáll et al. 2021, ACP 21: isothermal experiments
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Marshall et al. 1961, Nubila 4(1)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

Monte Carlo: const Jhet, lognormal A
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(https://www.imk-aaf.kit.edu/, photo: KIT/Ottmar Möhler)
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AIDA @ KIT

(https://www.imk-aaf.kit.edu/, photo: KIT/Ottmar Möhler)

AIDA cooling rate: ca. 0.5 K/min

https://www.imk-aaf.kit.edu/
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Jhet or ns ?
Vali 2014 (ACP)

“Interpretations of the experimental results face considerable difficulties ... two separate ways of interpreting
the same observations; one assigned primacy to time the other emphasized the temperature-dependent impacts
of the impurities ... dichotomy – the stochastic and singular models”
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Particle-based freezing: singular (Shima et al.) / time-dependent (this work)

singular: INAS Tfz as attribute; initialisation by random sampling from P(A,Tfz) with lognormal A
freezing if Tambient(t) < Tfz|sampled at t=0

time-dependent: A as attribute (randomly sampled from the same lognormal)
Monte-Carlo freezing trigger using P(A · Jhet(Tambient(t)))

time-dependent Jhet-based (ABIFM)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

theory (in modern notation)
(Bigg ’53, Langham&Mason ’58, Carte ’59,Marshall ’61)

Poisson counting process with rate r :

P
∗
(k events in time t) =

(rt)k exp(−rt)

k!

P(one or more events in time t) = 1 − P
∗
(k = 0, t)

ln(1− P) = −rt

introducing Jhet(T ), T (t) and INP surface A:

ln (1−P(A, t)) = −A

t∫

0

Jhet(T (t ′)) dt ′

︸ ︷︷ ︸

ns(Tfz)

INAS: ns(Tfz) = exp(a · (Tfz − T0◦C ) + b)

experimental ns(T ) fits: e.g., Niemand et al. 2012

for a constant cooling rate c = dT/dt:

ln(1 − P(A, t  Tfz)) = −

A

c

∫ T0+ct

T0

Jhet(T
′
)dT

′
= −A · ns(Tfz)
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ABIFM Jhet/c (m=28.14 c=-2.92)
INAS: dns(T)/dT= a ns(T) (dust)
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Poissonian model of freezing & Ice Nucleation Active Sites (INAS)

Is it a problem?

for a constant cooling rate c = dT/dt:
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Testing different cooling-rate profiles in a box model



20/27

Testing different cooling-rate profiles in a box model



20/27

Testing different cooling-rate profiles in a box model



21/27

Testing three flow regimes and two immersion freezing representations
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Particle-based µ-physics + prescribed-flow: glaciation

16+16 super-particles/cell for INP-rich + INP-free particles
Naer = 300/cc (two-mode lognormal) NINP = 150/L (lognormal, Dg =0.74 µm, σg=2.55)

spin-up = freezing off; subsequently frozen particles act as tracers
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Testing three flow regimes and two immersion freezing representations

◮ range of cooling rates in simple flow (far from 0.5 K/min for AIDA as in Niemand et al. 2012)

◮ only time-dependent scheme robust across flow regimes (consistent with box model & theory)
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100% open-source code:

/ /
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Jhet or ns ?

Vali 2014 (ACP)

“Interpretations of the experimental results face considerable difficulties ... two separate ways of interpreting
the same observations; one assigned primacy to time the other emphasized the temperature-dependent impacts
of the impurities ... dichotomy – the stochastic and singular models”

stochastic or deterministic?
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Jhet or ns ?

Vali 2014 (ACP)

“Interpretations of the experimental results face considerable difficulties ... two separate ways of interpreting
the same observations; one assigned primacy to time the other emphasized the temperature-dependent impacts
of the impurities ... dichotomy – the stochastic and singular models”

stochastic or deterministic?

DeMott 1990 (J. Appl. Meteorol.)

“If one takes the standard definition of the “threshold temperature” for ice fomation: 1 particle in 104

producing an ice crystal, then this temperature (assuming all particles are immersed in drops) can be predicted
from [a power law versus temperature]”

common underlying Poissonian model
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(a): isothermal freezing conditions with −20 ◦C
(b): constant cooling rate from −10 ◦C to −30 ◦C within 10 minutes
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Thank you for your attention!

sylwester.arabas@agh.edu.pl
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