Constraining fall speed of unrimed particles by cloud radar observations and novel modeling techniques

M. **Karrer¹**, J. Dias Neto¹, S. Kneifel¹, D. Ori¹, V. Schemann¹, A. Seifert², C. Siewert² ¹University of Cologne, Institute for Geophysics and Meteorology ²German Weather Service (DWD)

1. Motivation	2. Methods: Bulk microphysics schemes and a Lagrangian Particle Model		
Ice particle sedimentation and aggregation are key processes for precipitation development. However, poorly constrained parameters (e.g. terminal	Bulk schemes: Seifert-Beheng two- moment scheme (SB) [1]	Representation of the ice phase 4 ice categories (cloud ice, snow , graupel, hail) with 2 predicted moments of the particle size distribution (PSD); fixed properties (e.g. terminal velocity size relation) for each category.	The by 0.05
bulk scheme limitations (e.g. categorization) hamper a more realistic representation of these processes	Predicted Particle Properties (P3) [2]	Single ice category; Predicted particle properties (rime volume and rime density) along with 2 predicted moments of the PSD.	$\frac{9}{9} 0.00 \xrightarrow{1} 2 3 4 5$ Diameter D / mm
We utilize LES (ICON-LEM) simulations (forced by a NWP model), cloud radar obser- vations, a Lagrangian Particle	Lagrangian Particle Model:		dense nonsph. graupel
	Monte-Carlo Particle Model McSnow [3]	Modeling of superparticles and their interactions; Size distribution evolves freely ; 5 predicted properties for each superparticle (see Box 4).	W OUD See 0.00 W OUD See 0.00 W OUD See 0.00
modelto constrain assumptionsandparametersinbulkschemes.	We focus on aggregation and sedimentation, where we find discrepancies when compared to cloud radar observations (Box 3), which we further investigate in idealized 1D-simulations (Box 4) and by analyzing simulated aggregates (Box 5).		U I Z 3 4 5 Diameter D / mm Example of size distributions in the bulk schemes: grid box containing rimed and unrimed particles (top for SB; bottom for P3)
3. Bulk scheme eva	aluation: Case	studv (24th November 2015, lülich)	

4. Bulk and Lagrangian model in observational space (idealized 1D-simulations)

Left: Schematic of McSnow; Right: Vertical profiles of synthetic mean Doppler velocity based on idealized simulations (linear temperature profile: -30°C to 0°C; constant supersaturation over ice: 1%

- **Continuous increase** of Doppler velocity in **McSnow** due to explicit modeling of PSD and terminal velocity relation (see Box 5).
- Sharp increase of Doppler velocity in SB due to conversion of cloud ice (blue) to snow (green). \rightarrow Evaluate assumptions by aggregation model (Box 5)

5. Comparison of terminal velocity parameterizations with simulated aggregates

Top: Terminal velocity as assumed by the different models and calculated from the simulated aggregates of plates (using the hydrodynamic model of [6]) Bottom: Examples of a aggregates of plates and dendrites simulated with the aggregate model from [7]

6. Conclusion & Outlook

- Radar simulator **allows to compare** different **models** with **observations** in observational space.
- Aggregation model shows smooth transition and saturation at large sizes of the terminal velocity.
- Particle geometries from aggregation model and Atlas-type velocity ansatz could overcome current discrepancies.
- Derive particle properties (e.g. fall speed) as a function of the number of monomers using an aggregation model [5] and hydrodynamic theory.
- Use newly derived particle properties in SB (including Atlas-type fits) and McSnow and evaluate impact of changes on aggregation and precipitation.

1. Aggregation model shows continuous transition between monomers and aggregates.

- 2. Terminal velocity of large particles **saturates** (in contrast to power-law relation).
- 3. Atlas-type velocity approach [8] matches terminal velocity of small and large particles.

[1] Seifert, A., and Beheng K.D. (2006). "A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description." MAP
[2] Morrison, H. and Milbrandt J. (2015). "Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests". JAMES
[3] Brdar, S., and Seifert A. (2018). "McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space." JAMES
[4] Dias Neto, J. et. al. (2018). "The TRIple-frequency and Polarimetric radar Experiment for improving process observation of winter precipitation." ESSD, under review
[5] Maahn M. (2015). "Exploiting vertically pointing Doppler radar for advancing sniw and ice cloud observations" PhD thesis
[6] Böhm J. (1992). "A general hydrodynamic theory for mixed-phase microphysics. part i: Drag and fall speed of hydrometeors." AR
[7] Leinonen, J. (2013). "Impact of the microstructure of precipitation and hydrometeors on multi-frequency radar observations." PhD thesis
[8] Seifert, A. et. al. (2014). "On the anaytic approximation of bulk collision rates of non-spherical hydrometeors" GMD

Workshop on Eulerian vs. Lagrangian methods for cloud microphysics, Cracow, 2019

Contact: markus.karrer@uni-koeln.de