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3. Bulk scheme evaluation: Case study (24th November 2015, jJulich)
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4. Bulk and Lagrangian model in observationalfl 5. Comparison of terminal velocity parameteriza-

tions with simulated aggregates

space (idealized 1D-simulations)
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1. Aggregation model shows
continuous transition between

monomers and aggregates.

6. Conclusion & Outlook

 Radar simulator allows to compare different models with observations
number of number of number of

In observational Space. monomers: 1 monomers: 20 monomers: 100 2 Terminal Velocity of |arge partiCIGS

saturates (in contrast to power-law

 Aggregation model shows smooth transition and saturation at large sizes relation)

of the terminal velocity.

3. Atlas-type velocity approach [8]
matches terminal velocity of small

Aggregation model [7] and large particles.

* Particle geometries from aggregation model and Atlas-type velocity ansatz could
overcome current discrepancies.
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