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ADstract

The effect of turbulence on combined condensational and collisional growth of cloud
droplets is investigated using high-resolution direct numerical simulations. The motion
of droplets is subjected to both turbulence and gravity. We solve the thermodynamic
equations that govern the supersaturation field together with the hydrodynamic

equations describing the turbulence. The collision-coalescence process is approximated

by a superparticle approach assuming unit collision and coalescence efficiency, i.e.,
droplet coalesce upon collision. Condensational growth of cloud droplets due to
supersaturation fluctuations depends on the Reynolds

number, while the collisional growth was previously found to depend on the mean
energy dissipation rate. Here we show that the combined processes depend on both
Reynolds number and the mean energy dissipation rate. Droplet size distributions
broaden either with increasing Reynolds number or mean energy dissipation rate in the
range explored here. Even though collisional growth alone is insensitive to Reynolds
number, it is indirectly affected by the large scales of turbulence through condensation.
This is argued to be due to the fact that condensational growth results in wider droplet-
size distributions, which triggers collisional growth. Since turbulence in warm clouds
has a relatively small mean energy dissipation rate, but a large Reynolds number,
turbulence mainly affects the condensational growth and thus influences the collisional
growth indirectly through condensation. Thus, the combined condensational and
collisional growth of cloud droplets is mostly dominated by Reynolds number. This
work, for the first time, numerically demonstrates that supersaturation fluctuations

enhance the collisional growth. It supports the findings from laboratory experiments and

the observations that supersaturation fluctuations are important for precipitation.

Physical picture

This very recent daytfme image of the Caribbean region demonstrates the rich variety of
cloud features and organizational patterns over ocean and land.

“Understanding Clouds to Anticipate Future Climate”  sandrine Bony et al, 2017
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Can we understand clouds without turbulence?

To address the bottleneck problem on warm rain formation, we study the
coagulational growth of cloud droplets by direct numerical simulation
(DNS). We track superparticles in a turbulent gas flow and we solve the
corresponding equations by PENCIL CODE (https://github.com/pencil-
code/).
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Direct numerical simulation

Eulerian equations:
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Momentum equation for droplets: %ﬂﬁ dd‘: !(u V)+g

Detection of the collision:

Lagrangian trajectory of
one droplet
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Stochastic scheme:
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Table 1. Summary of the simulations.

Run N,/ 10° mesh points fy L (m) ums (m s7!) Re, € (m25‘3) n - 1074 (m) 1, (s)

A 8.4 256° 0.02 0.125 0.17 57  0.039 4 0.016
B 67 5123 0.02 0.25 0.21 94 0.04 | 0.016
C 67 5123 0.02 0.50 0.27 158  0.036 | 0.017
D 67 5123 0.0072 0.44 0.13 98  0.005 7 0.044
E 67 5123 0.01 0.37 0.15 97 0.01 6 0.032
F 67 5123 0.014 0.30 0.18 94 0.02 5 0.022

Here, N, is the number of superparticles used in the simulation, fj is the amplitude of the
random forcing (see text), and L is the domain size.
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Figure 1. Turbulent kinetic-energy spectra for (a) different Re; = 57 (magenta dashed line), 94 (red solid
line), and 158 (cyan dotted line) at fixed € = 0.04m?s ™3 (see Runs A, B, and C in Table[T]for details) and for
(b) different € = 0.005 m2s ™ (blue dotted line), 0.01 (black dashed line), 0.02 (green dash-dotted line) and
0.04 (read solid line) at fixed Re; = 100 (see Runs B, D, E, and F in Table[1]for details).
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Results

Condensational gr-owth of cloud droplets
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Time evolution of o4 for different (a) € at Re;, = 130 and (b) Re; at€ = 0.039 m2s 3.

Broadening of droplet size distribution due to supersaturation fluctuations.

Gollision-coalescence in 3-D turbulence
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FIG. 2. Droplet size distribution for the same simulations as in Fig. 1. (a) Different Re, at fixed . (b) Different £ at
fixed Re,. Here 3 is the standard deviation and 38 is the significance level.

Mechanism
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Growth of cloud droplets strongly depends on the mean turbulent energy-dissipation
rate per unit mass, and only weakly on the Reynolds number of the turbulent flow.

Gollision-coalescence in 3-D turbulence & gravity

Initial distribution: monodisperse cloud droplets (10 pum)
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time scale to reach drizzle sized droplets is
about 800 s, which is relevant to the time scale
of the rapid warm rain formation.

Lucky droplet model
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The combined condensational and collisional growth of cloud droplets is mostly dominated
by Reynolds number.
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Conclusion

The combined condensational and collisional growth of cloud droplets is
mostly dominated by Reynolds number. This work, for the first time,
numerically demonstrates that supersaturation fluctuations enhance the
collisional growth. It supports the findings from laboratory experiments and
the observations that supersaturation fluctuations are important for

precipitation. E-mail: xiang.yu.li@su.se



	Slide Number 1

