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1. Introduction
To estimate cloud microphysical properties in radar observations, it is important to understand the relationship between the properties and the radar
reflectivity factor. The observed radar reflectivity factor is increased by the Bragg scattering due to turbulent fluctuations of the refractive index and
droplet number density (Knight & Miller, J. Atmos. Sci., 1998); i.e., clear-air and particulate Bragg scattering, respectively. In this study, we investigate the
influence of particulate Bragg scattering due to turbulent clustering of cloud droplets with a broad size distribution.

5. Conclusion
➢ The DNS of particle-laden turbulence has been performed to obtain turbulent droplet clustering data (Fig. 1). The clustering data were used to

calculate and parameterize the number density fluctuation spectrum, which represents the clustering influence on the particulate Bragg scattering.
The proposed parameterization can reproduce the spectrum in a sufficient accuracy even for the case with gravitational droplet settling (Fig. 2).

➢ The proposed parameterization has been applied to cloud LES data (Fig. 3). The radar reflectivity factor was calculated considering the particulate
and clear-air Bragg scattering. The increase of radar reflectivity factor due to turbulent clustering can be larger than the observation error level. The
large influence is observed inside turbulent clouds, where the liquid water content and the energy dissipation rate are sufficiently large (Fig. 4).
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3. Parameterization of 𝑬𝐫𝟑𝐧𝐩(𝒌) based on direct numerical simulation (DNS) with Lagrangian particles
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➢ Three-dimensional DNS of particle-laden homogeneous isotropic turbulence
Taylor-microscale-based Reynolds number: Re𝜆 = 204 (5123 grid points)
Lagrangian particles (droplets): 𝑁p = 1.5 × 107 for each Stokes number
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4. Application to cloud large-eddy simulation (LES) data

Fig. 1: Turbulent droplet clustering (2D slice at 0 < 𝑧 < 4𝑙𝜂) obtained by DNS. 

Droplets concentrate in low-vorticity regions due to centrifugal force.

Fig. 2: Comparison of 𝐸r3np(𝑘)

obtained from DNS data
(droplets with broad size
distribution) and estimated by
the proposed parameterization:
(a) 𝑔 = 0 and (b) 𝑔 = 9.8 m/s2.

Fig. 3: Cloud LES data: (a) volume rendering of optical depth and (b) isosurfaces of (blue) the energy 
dissipation rate 𝜖 = 100 cm2/s3 and (yellow) the vertical velocity 𝑢3 = 3 m/s. 

Fig. 4: Liquid water content (LWC),
energy dissipation rate 𝜖, and radar
reflectivity factors for S-band
microwaves in the cross section.
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𝑟p Droplet radius

𝑛p Droplet number density

𝜏p Droplet relaxation time

𝜏η Kolmogorov time

𝑙η Kolmogorov scale

➢Multiscale simulation model, MSSG (Multi-Scale Simulator for the Geoenvironment) 
➢ Spectral-bin cloud microphysics scheme (Onishi & Takahashi, J. Atmos. Sci., 2012)
➢ The protocol of RICO model intercomparison project (van Zanten et al., 2006)
➢ Extra 1h simulation with higher resolution: Δ𝑥 = Δ𝑦 = 25 m and Δ𝑧 = 20 m
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𝐸n(𝑘) Power spectrum of refractive index fluctuation
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Parameterization developed in this study
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