2nd Workshop on Eulerian vs. Lagrangian methods for cloud microphysics Kraków, April 2019

Aqueous chemical reactions in atmospheric clouds

Anna Jaruga

clima.caltech.edu

github.com/climate-machine

2nd Workshop on Eulerian vs. Lagrangian methods for cloud microphysics Kraków, April 2019

Aqueous chemical reactions in atmospheric clouds

Anna Jaruga

2nd Workshop on Eulerian vs. Lagrangian methods for cloud microphysics Kraków, April 2019

Aqueous chemical reactions in atmospheric clouds

Example: sulfur oxidation

Anna Jaruga

chemistry 101 and sulfur budget

example results from a high resolution model

example results from a global model

chemistry 101 and sulfur budget

example results from a high resolution model

• example results from a global model

Sulfur chemistry 101: sulfur oxidation

DMS - dimethyl sulfide

SO₂ - sulfur dioxide

H₂SO₄ - sulfuric acid

Sulfur chemistry 101: sulfur oxidation

DMS - dimethyl sulfide

 SO_2 - sulfur dioxide

H₂SO₄ - sulfuric acid

-VI

-11

-IV

Sulfur chemistry 101: sulfur oxidation

DMS - dimethyl sulfide

SO₂ - sulfur dioxide

H₂SO₄ - sulfuric acid

- sulfate is a major aerosol component
 - 10-67% of submicron particle mass
 - 32% on average

in the marine BL affecting the sulfur cycle

Fig 1 from Faloona 2009: important processes in the marine BL affecting the sulfur cycle

in the marine BL affecting the sulfur cycle

	Sources		Sinks	lifetime [days]
DMS		19.4		
SO ₂	anthropogenic volcanic DMS oxidation	67.2 7.8 18.5		
sulfate	direct emissions homogeneous ox. heterogeneous ox.	2 11 42		

	Sources		Sinks		lifetime	[days]
DMS		19.4				
SO ₂	anthropogenic volcanic DMS oxidation	67.2 7.8 18.5	dry deposition wet deposition oxidation	34.6 7.3 51.6		
sulfate	direct emissions homogeneous ox. heterogeneous ox.	2 11 42	dry deposition wet deposition	6.4 44.6		

	Sources		Sinks		lifetime	[days]
DMS		19.4				1.95
SO ₂	anthropogenic volcanic DMS oxidation	67.2 7.8 18.5	dry deposition wet deposition oxidation	34.6 7.3 51.6		1.8
sulfate	direct emissions homogeneous ox. heterogeneous ox.	2 11 42	dry deposition wet deposition	6.4 44.6		4.6

	Sources		Sinks		lifetime [days]
DMS		19.4			1.95
SO ₂	anthropogenic volcanic DMS oxidation	67.2 7.8 18.5	dry deposition wet deposition oxidation	34.6 7.3 51.6	1.8
sulfate	direct emissions homogeneous ox.	2 11	dry deposition wet deposition	6.4 44.6	4.6
	heterogeneous ox.	42	fast re the atmo	dox: sr ospher	nall amounts in e but big fluxes

	Sources		Sinks		lifetime	[days
DMS		19.4				1.95
SO ₂	anthropogenic volcanic DMS oxidation	67.2 7.8 18.5	dry deposition wet deposition oxidation	<mark>34.6</mark> 7.3 51.6		1.8
sulfate	direct emissions homogeneous ox.	2 11	dry deposition wet deposition	6.4 44.6		4.6
	heterogeneous ox.	42	fast ree the atmo	dox: sr osphere	nall amo e but big	unts in fluxes

IPCC 5AR Myhre et al 2013

Effective Radiative Forcing (**ERFari+aci**) W/m²: - -0.9 (-1.9, -0.1) our best knowledge

CMIP ACCMIP multi model mean W/m²:

- -1.08 from anthropogenic aerosols
- - 0.89 from sulfate aerosols only

Water drop

Water drop

Dissociation

Oxidation

Fig 5 from Faloona 2009

Fig 5 from Faloona 2009
pH is the biggest source of uncertainty:

- what is the chemical composition of droplets
- what is the droplet size distribution

chemistry 101 and sulfur budget

example results from a high resolution model

• example results from a global model

• chemistry 101 and sulfur budget

example results from a high resolution model

• example results from a global model

High resolution microphysics + aqueous phase chemistry model

VS

Ovchinnikov and Easter 2010

multi-dimensional bin scheme

Lagrangian scheme

Jaruga and Pawlowska 2018

High resolution microphysics + aqueous phase chemistry model

Super-droplet microphysics:

- location (x,y,z)
- wet radius
- dry radius
- hygroscopicity
- multiplicity

= 7

Lagrangian scheme

Jaruga and Pawlowska 2018

Shima et al. 2009

Arabas et al. 2015

High resolution microphysics + aqueous phase chemistry model

Super-droplet microphysics:

- location (x,y,z)
- wet radius
- dry radius
- hygroscopicity
- multiplicity

= 7

Super-droplet aq. chemistry:

- mass of each chemical compound

9 * 10¹⁰

Lagrangian scheme

Jaruga and Pawlowska 2018

particle diameter [µm]

collisions + aqueous phase chemistry

Factor	Value	Units	
Number of super-droplets	256	no. per grid cell	
Model time step	1	S	
Particle-based scheme time step	0.1	S	convergence
Dry air potential temperature at $t = 0$	289	K	
Water vapour mixing ratio at $t = 0$	7.5	$g kg^{-1}$	
Pressure at $z = 0$	1015	hPa	
Median radius	0.05	μm	
Geometric standard deviation	1.8	—	
Total aerosol number concentration	50	cm^{-3}	
Dry particle density	1.8	g cm ³	"clean"
Hygroscopicity	0.61	_	Cican
Concentration of SO ₂ at $t = 0$	0.2	ppbv	
Concentration of O_3 at $t = 0$	25	ppbv	
Concentration of H_2O_2 at $t = 0$	0.4	ppbv	
Concentration of CO_2 at $t = 0$	360	ppmv	
Concentration of HNO ₃ at $t = 0$	0.1	ppbv	maritima
Concentration of NH_3 at $t = 0$	0.1	ppbv	manume

Changes in aerosol size distribution

Particle radius [um]

Particle radius [um]

Changes in pH

• chemistry 101 and sulfur budget

example results from a high resolution model

• example results from a global model

• chemistry 101 and sulfur budget

• example results from a high resolution model

example results from a global model

Turnock et al 2019 (just accepted to GRL)

 Reductions in Europe/USA sulfur emissions have contributed to higher cloud-water pH, thereby altering sulfate formation rates.

- How changes in cloud-water pH affect:
 - aerosol formation
 - aerosol size distributions
 - aerosol radiative effects.

- The models shouldn't assume constant in-cloud pH

all-sky shortwave TOA aerosol radiative forcing **Turnock et al 2019 (just accepted to GRL)**

Decrease in sulfur emissions in Europe

Increase in sulfur emissions in China

Impact of the assumed in-cloud pH

Impact of the assumed in-cloud pH

• chemistry 101 and sulfur budget

• example results from a high resolution model

example results from a global model

• chemistry 101 and sulfur budget

example results from a high resolution model

• example results from a global model

Summary 1/3

Sources:

- anthropogenic
- phytoplankton
- volcanoes

Sinks:

- oxidation
- dry deposition
- wet deposition

Oxidation reaction:

- in-cloud vs gas-phase
- pH dependant

Summary 2/3

adapted from Lebo and Seinfeld (2011)

Summary 2/3

adapted from Lebo and Seinfeld (2011)

Summary 2/3

large tail

adapted from Lebo and Seinfeld (2011)

Summary 3/3

Aerosol particles influence clouds

- CCN source
- droplet concentration
- cloud albedo
- rain initiation
- cloud-lifetime effects

Stevens and Feingold 2009
Summary 3/3

Aerosol particles influence clouds

- CCN source
- droplet concentration
- cloud albedo
- rain initiation
- cloud-lifetime effects

Stevens and Feingold 2009

Clouds influence aerosol particles

- irreversible chemical reactions
- collisions between water drops
- precipitation

