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Bin microphysics scheme (UPNB)

• Four different hydrometeor types
• Each type of the different particles were divided into 36 bins:

• Calculated variables: ~400, mixing ratio, number concentration, melted 
water on snow and graupel (mixing ratio), rimed water on snow (number 
and mixing ratio) 

→melting fraction calculated (0.8)
→riming fraction calculated (0.5)
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Ice crystal Water drop Snowflake Graupel 
particleCloud water Raindrop

Min. size (m) 2.06∙10-6 1.56∙10-6 2.50∙10-5 2.06∙10-6 3.37∙10-6

Max. size (m) 0.38 2.50∙10-5 1.02∙10-2 7.85∙10-2 5.08∙10-3



Bin microphysics scheme (UPNB)

• The following microphysical processes were taken into consideration:
1) Diffusional growth of different type of hydrometeors;
2) Melting of solid hydrometeors;
3) Freezing of supercooled water drops; 
4) Collision and coalescence of water drops;
5) Self-coagulation of pristine ice crystals results in snowflakes;
6) Self-coagulation of snowflakes increases the mass of snowflakes;
7) Riming;
8) Breakup of water drops;
9) Formation of pristine ice crystals by deposition nucleation or 

condensational freezing;
10) Sedimentation;
11) Collision-induced shedding 
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Piggybacking methodology



LBA case setup

• WRF (Weather Research and Forecasting) v3.7.1

• Idealized LES simulation

• Prescribed random perturbations on:
• moisture field

• temperature field

• surface heat flux

• surface moisture flux

• Wind relaxation (60 minutes) (see: http://box.mmm.ucar.edu/gcss-wg4/gcss/case4.html)
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http://box.mmm.ucar.edu/gcss-wg4/gcss/case4.html


CTRL Temperure (T) Moisture (Q) Member1 (E0.25) Member2 (E0.5)

Domain size
(horizontal)

126×126 126×126 126×126 126×126 126×126

Horizontal resolution 400 m 400 m 400 m 400 m 400 m

Domain size
(vertical)

81 (stretched grid) 81 (stretched grid) 81 (stretched grid) 81 (stretched grid) 81 (stretched grid)

Vertical resolution <1 km ~ 100m, > ~ 200 m <1 km ~ 100m, > ~ 200 m <1 km ~ 100m, > ~ 200 m <1 km ~ 100m, > ~ 200 m <1 km ~ 100m, > ~ 200 m

Simulation time 12 h 12 h 12 h 12 h 12 h

Time step 3 sec. 3 sec. 3 sec. 3 sec. 3 sec.

Microphysics Bin with modified surface
heat and moisture fluxes

Bin with modified surface
heat and moisture fluxes

Bin with modified surface
heat and moisture fluxes

Bin with modified surface
heat and moisture fluxes

Bin with modified surface
heat and moisture fluxes

Order of 
perturbation

Initial temperture: ± 0.1 K
random perturbation
Initial moisture: ± 0.1 g/kg
random pert.
In every 15 minutes: 
temperature and moisture: 
± 0.1 K and ± 0.1 g/kg
random pert.
Heat and moisture flux: ±
10% random pert.

Initial temperture: ± 1 K
random perturbation
Initial moisture: ± 0.1 g/kg
random pert.
In every 15 minutes: 
temperature and moisture: 
± 0.1 K and ± 0.1 g/kg
random pert.
Heat and moisture flux: ±
10% random pert.

Initial temperture: ± 0.1 K
random perturbation
Initial moisture: ± 1 g/kg
random pert.
In every 15 minutes: 
temperature and moisture: 
± 0.1 K and ± 0.1 g/kg
random pert.
Heat and moisture flux: ±
10% random pert.

Initial temperture: ± 0.25 K
random perturbation
Initial moisture: ± 0.25 g/kg
random pert.
In every 15 minutes: 
temperature and moisture: 
± 0.1 K and ± 0.1 g/kg
random pert.
Heat and moisture flux: ±
10% random pert.

Initial temperture: ± 0.5 K
random perturbation
Initial moisture: ± 0.5 g/kg
random pert.
In every 15 minutes: 
temperature and moisture: 
± 0.1 K and ± 0.1 g/kg
random pert.
Heat and moisture flux: ±
10% random pert.
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All type was run with D-POL/P-PRI and D-PRI/P-POL



Bin microphysics scheme (UPNB) – CCN

• CCN concentrations for POL and PRI cases:
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POL (continental) ~ 1000 cc Supersaturation PRI (maritime) ~ 100 cc

NCCN = 316.e4*SS4.0*1.e6 SS < 0.1 SS < 0.1 NCCN = 4.78e5*SS0.4*1.e6

NCCN = SQRT(SS)*1.e9 SS >= 0.1 & SS < 1.0 SS >= 0.1 & SS < 0.63 NCCN = 120.0*SS0.4*1.e6

NCCN = 1.e9 SS >= 1.0 SS >= 0.63 NCCN = 1.e8



Cloud fraction
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Supersaturation
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Precipitation (domain mean)
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DPOL – DPRI < 0.5 mm



Precipitation (domain mean)

DPOL-PPRI > DPRI-PPOL
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CCN activation vs. supersaturation
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Cloud water/rain and vertical velocity
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D-POL
P-PRI



Bouyancy
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Microphysics – Cloud water
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POL case: more 
cloud water



Microphysics – Rain
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Microphysics – Pristine ice
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POL/PRI in ice: 
affect the driver 
(dynamics);
not the
microphysics 



Microphysics – Snow
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Microphysics – Graupel
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Same number, 
higher mass → 
larger graupel 
particles (P set)



Conclusions

• Similar difference in precipitation like in GM16*, but opposite sign.

• No significant effect on microphysicsal, dynamical fields of the
perturbations of the initial field.

• Pristine supersaturation > polluted supersaturation.

• CCN concentration impact cloud water, dynamics (driver) affects ice
microphysics

• Further plans:
• investigation of the size distributions
• different model (differences caused due to microphysics or due to different

representation of dynamics?)
• updated version of bin scheme (different description of CCN activation and cloud

water formation)
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GM16: Grabowski-Morrison, JAS, 2016



Thank you for your attention!
Questions?
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