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Figure 1. The growth and deformation of the model snowflakes with riming at different values of the effective liquid water path. These snowflakes were
generated using the process described for riming model B in section 2.3. Each cubic volume element is 40 μm wide, and all the snowflakes are on the same scale,
as shown in the top left corner. The original, unrimed ice crystals are colored in each image in order to distinguish them from the ice formed by riming.

extended shallow clouds and the lowest values for isolated shallow clouds. However, in general, the derived
LWP distribution is broad, having a very large spread with the maximum reaching 1 kg m−2 for extended
shallow and deep systems. The LWP values calculated in winter precipitation during the Light Precipitation
Experiment (LPVEx) range from 0.030 to 0.625 kg m−2 [Lautaportti et al., 2012]. During the Towards an Optimal
estimation based Snow Characterization Algorithm (TOSCA) project, devoted to snowfall observations, the
derived LWP reached 0.8 kg m−2 [Löhnert et al., 2011]. For deep convective clouds, Sheu et al. [1997] report
values of over 2.0 kg m−2, and Rosenfeld and Woodley [2000] observed a liquid water content of 1.8 g m−3 in
temperatures above −38∘C, which translates to a LWP of 1.8 kg m−2 for a column height of 1 km (and much
higher for typical cumulonimbus cloud heights).

In scenario C, the snowflake growth is driven primarily by the riming process, so only one data set was derived
from this scenario.

We used the procedure described earlier by Leinonen and Moisseev [2015] to draw a sample from each data set:
the interval between zero and the maximum diameter Dmax was divided into 55 size bins, and rimed aggre-
gates were generated until each bin contained at least 10 of them. Hence, a sample of the rimed aggregates
was obtained, roughly uniform in size. Dmax was set to 22 mm for scenarios A and B and to 8 mm for scenario C.
The minimum size, Dmin, depends on the scenario: the lower limit is set by the minimum dendrite crystal size
of 0.1 mm, but in scenarios A and B where the amount of riming was fixed for each data set, the riming pro-
cess causes even the smallest snowflakes to grow considerably, and thus Dmin becomes larger, up to 2.8 mm
at le = 2.0 kg m−2 for both scenarios A and B. The diameter D was defined as the diameter of the minimum
enclosing sphere of the rimed snowflake.

2.5. Scattering Properties
We computed the scattering properties of the snowflakes using the discrete dipole approximation (DDA),
implemented in the ADDA software [Yurkin and Hoekstra, 2011]. We computed the scattering properties at
four frequencies: 9.7 GHz (X band), 13.6 GHz (Ku band), 35.6 GHz (Ka band), and 94.0 GHz (W band). For the
sake of brevity, and to concentrate on triple-wavelength analysis, the results of the X band computations are
only shown in the supporting information. Orientation averaging was not performed individually for each
particle, but since each snowflake is rotated to partial horizontal alignment as described in section 2.1, the
snowflake ensemble as a whole can be considered orientation averaged. The complex refractive indices of ice
at each frequency were interpolated from the tables of Warren and Brandt [2008].

The scattering computations for equivalent spheroidal snowflakes were performed with the T-matrix method,
using the toolkit of Leinonen [2014] based on the code of Mishchenko and Travis [1998]. The properties of the
spheroids were determined as follows: First, we fitted relations for the axis ratio f and mass m of the aggregate
models using the forms

f = arg + b (3)

m = !′r"
′

g (4)

where a, b, !′, and "′ are fitted coefficients and rg is the radius of gyration, defined as

rg =

√
1
V ∫V

(
r − rCM

)2
dr (5)
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The vertical structure of deep convection:

How important is ice particle habit
for the redistribution of moisture? 

Whether particles end up in the anvil, in the 
mid-level outflow or at the surface as 
precipitation depends on their growth, their 
habit, and the corresponding fall speed. 

How good are our models in describing this 
change in particle habit?



How can we determine the geometry of rimed snow?
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How can we determine the properties of partially rimed snowflakes? 

Field measurements 
Lab experiments 
Modeling of individual particles 

Here we use the aggregation and riming model of Leinonen and Szyrmer (2015) 

Statistical geometrical model. 
Simulates aggregation of ice monomers and subsequent riming. 
No flow solver, no collision efficiency, etc. 
Droplets „freeze“ at first contact with ice structure. 

Example of the riming of a dendrite aggregate (with N=2):

} difficulties to measure the degree of riming



Transition from snow to graupel in m-D space

4

We want to parameterize the 
conversion from snow to graupel  
in a continuous way. 

Using the explicit aggregation and 
riming model of Leinonen and  
Szyrmer (2015) we can simulate 
individual aggregates and rimed 
snowflakes. 

This gives us access to the full 
information regarding their 
geometry, especially their  
mass-size relation.  
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Figure 1. Mass-diameter diagram showing the simulated growth of an individual aggregate due to rim-

ing (black solid line), the corresponding fill-in model (dark grey dashed line), as well as the mass-diameter

relationships of graupel and unrimed aggregates, which follow a D3 and D2 law, respectively.

164

165

166

the assumption of the ’fill-in’ model, which corresponds to a vertical line in the m–D dia-173

gram (dark grey dashed line). Soon, the maximum dimension also starts to grow, leading174

to a deviation from the ’fill-in’ model. In fact, the simulated partially rimed snowflake ap-175

proaches the graupel m–D relation only asymptotically, and does at least double its size176

before it comes close to the graupel relation. This suggests that an alternative approach to177

the ’fill-in’ model is needed to describe the conversion of aggregates to graupel.178

This result seemingly contradicts some observational studies, for example, the recent179

work by Erfani and Mitchell [2017], who come to the conclusion that the fill-in model is180

a good approximation for their data. Here we can only speculate that this is a result of the181

limitations of the observations, e.g., the di�culties to estimate the size and mass of the182

original unrimed crystal. In addition, the observation-based studies are limited by the fact183

that each crystal is only measured once, which makes it di�cult separate the scatter due to184

the variability among crystals from the evolution during rime growth.185

–7–



Parameterization using normalized variables
To parameterize the geometry of partially rimed snowflake we introduce two 
dimensionless quantities. 

Given the rime mass and the size of the original aggregate (or the ice mass in 
McSnow), we want to calculate the maximum dimension.

5
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3.2 A Similarity Model for the Maximum Dimension186

An alternative to the classic fill-in model is the use of normalized variables and a187

non-dimensional scaling relation. To describe the transition from the unrimed aggregate to188

graupel, we use those two asymptotic regimes to normalize the rime mass and the maxi-189

mum dimension of the partially rimed aggregate. Hence, we use the mass m
g

of the size-190

equivalent spherical graupel particle, rather than the usual total mass of the particle, to191

normalize the rime mass, which results in a rime fraction192

M =
mrime
m
g

(1)193

where194

m
g

=
⇡

6
⇢rimeD3

max. (2)195

Here we assume that the graupel is large enough that we can neglect the contribution196

of the original ice structure and, hence, we need only to specify the (bulk) rime density197

⇢rime. To avoid a confusion with the rime fraction mrime/m, where m is the total mass of198

the particle, we call M = mrime/m
g

the normalized rime mass. The maximum dimension199

of the partially rimed aggregate is normalized by the maximum dimension of the unrimed200

aggregate:201

D = Dmax
Dagg

. (3)202

Hence, Dmax and mrime are normalized by the properties of the original unrimed aggregate203

and the graupel particle that the rimed aggregate approaches asymptotically. This trans-204

formation maps the evolution of the partially rimed snowflake onto an appropriate non-205

dimensional phase space. To parameterize the geometry of the partially rimed aggregate206

we simply ask for a relation between M and D:207

M = f
m

(D) . (4)208

Note that Dmax would be the unknown quantity in a cloud model, and therefore this is an209

implicit equation for Dmax even if f
m

and its inverse are known. In general it might also210

be di�cult to determine Dagg for a partially rimed snowflake.211

Figure 2 shows the results of simulated rime growth of aggregates of dendrites for220

the low rime density (LDR) configuration of the model, as well as for high rime density221

(HDR) using the compaction algorithm. Estimating the rime density from the simulations222

is not straightforward, and an explicit estimate would require that we measure the actual223

volumes, something which we want to avoid. Here we simply estimate a bulk rime density224

–8–
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volumes, something which we want to avoid. Here we simply estimate a bulk rime density224

–8–

Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3.2 A Similarity Model for the Maximum Dimension186

An alternative to the classic fill-in model is the use of normalized variables and a187

non-dimensional scaling relation. To describe the transition from the unrimed aggregate to188

graupel, we use those two asymptotic regimes to normalize the rime mass and the maxi-189

mum dimension of the partially rimed aggregate. Hence, we use the mass m
g

of the size-190

equivalent spherical graupel particle, rather than the usual total mass of the particle, to191

normalize the rime mass, which results in a rime fraction192

M =
mrime
m
g

(1)193

where194

m
g

=
⇡

6
⇢rimeD3

max. (2)195

Here we assume that the graupel is large enough that we can neglect the contribution196

of the original ice structure and, hence, we need only to specify the (bulk) rime density197

⇢rime. To avoid a confusion with the rime fraction mrime/m, where m is the total mass of198

the particle, we call M = mrime/m
g

the normalized rime mass. The maximum dimension199

of the partially rimed aggregate is normalized by the maximum dimension of the unrimed200

aggregate:201

D = Dmax
Dagg

. (3)202

Hence, Dmax and mrime are normalized by the properties of the original unrimed aggregate203

and the graupel particle that the rimed aggregate approaches asymptotically. This trans-204

formation maps the evolution of the partially rimed snowflake onto an appropriate non-205

dimensional phase space. To parameterize the geometry of the partially rimed aggregate206

we simply ask for a relation between M and D:207

M = f
m

(D) . (4)208

Note that Dmax would be the unknown quantity in a cloud model, and therefore this is an209

implicit equation for Dmax even if f
m

and its inverse are known. In general it might also210

be di�cult to determine Dagg for a partially rimed snowflake.211

Figure 2 shows the results of simulated rime growth of aggregates of dendrites for220

the low rime density (LDR) configuration of the model, as well as for high rime density221

(HDR) using the compaction algorithm. Estimating the rime density from the simulations222

is not straightforward, and an explicit estimate would require that we measure the actual223

volumes, something which we want to avoid. Here we simply estimate a bulk rime density224

–8–

with
M is zero for unrimed 
snow and approaches 
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Parameterization using normalized variables
To parameterize the geometry of partially rimed snowflake we introduce two 
dimensionless quantities. 

Given the rime mass and the size of the original aggregate (or the ice mass in 
McSnow), we want to calculate the maximum dimension.

5
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with
M is zero for unrimed 
snow and approaches 
one for graupel.

D is the size relative to the unrimed 
snowflake. It is 1 for unrimed snowflakes 
and becomes large for graupel.



Result for the aggregation-riming model

Quite large scatter, but this is 
not unexpected for snowflakes. 
This already includes 
1.Different crystal habits. 
2.Two different rime densities. 
3.Aggregates of different size 

or monomer number N. 

6
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Figure 4. As Figure 3, but for all particle habits combined, and both rime densities (triangles: LDR, open

circles: HDR).

218

219

aggregates with a high monomer number N
agg

the simulations do not reach the final grau-242

pel stage, but remain in the regime of densely rimed snowflakes. A reasonable fit to the243

data is achieved with244

M = tanh [a(D � 1)p] . (5)245

with the values for a and p as given in Fig. 2. Given the large scatter of the data in each246

rime density regime, it seems reasonable to combine LDR and HDR simulations in a sin-247

gle dataset.248

The impact of the particle habit of the primary crystals on the M-D relation is249

shown in Figure 3 for aggregates of dendrites, rosettes, needles and plates. Similarly to250

the LDR and HDR simulations, we can conclude that the variability among aggregates of251

the same type is larger than the impact of the assumed particle habit. This result is consis-252

tent with the concept of a universal behavior of large aggregates and is therefore expected253

if Nagg is large enough. The di�erences in the functional fits are small enough that it254
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Result for the aggregation-riming model

Same data, different plot. 
Now the different colors are 
different habits: 
aggregates of dendrites, 
needles, rosettes, and plates. 
 
Circles are low density rime 
and triangles are high density 
rime. 

Grey area shows two standard 
deviations around the mean. 

Not perfect, but probably good 
enough.

7
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Figure 4. Size-rime relation for all particle habits and both rime densities.
Shown are binned averages for aggregates of dendrites (blue), needles
(green), rosettes (orange), and plates (red) for both rime densities (open
triangles: low density rime; open circles: high density rime). The binned
average of all data is shown by the dark gray boxes and the light gray area
shows two standard deviations around that mean (for the full data set).

By using this definition of mg, we assume that the graupel is large enough
that we can neglect the contribution of the original ice structure. This
is consistent with the idea that mg corresponds to an asymptotic regime,
that is, the limit of a very large graupel particle. Hence, we need only
to specify the (bulk) density rime !rime. To avoid a confusion with the
common rime fraction mrime∕m, where m is the total mass of the particle,
we call  = mrime∕mg the normalized rime mass.

The maximum dimension of the partially rimed aggregate is normalized
by the maximum dimension of the unrimed aggregate:

 =
Dmax
Dagg

. (3)

Hence, Dmax and mrime are normalized by the properties of the origi-
nal unrimed aggregate and the graupel particle that the rimed aggregate
approaches asymptotically, respectively.

To parameterize the geometry of the partially rimed aggregate, we simply
ask for a relation between  and :

 = "m () . (4)

Note that Dmax would be the unknown quantity in a cloud model, and
therefore, this is an implicit equation for Dmax even if fm and its inverse
are known. In general, it might also be difficult to determine Dagg for a
partially rimed snowflake.

Figure 2 shows the results of simulated rime growth of aggregates of
dendrites for the LDR configuration of the model, as well as for HDR
using the compaction algorithm. Estimating the density rime from the

simulations is not straightforward, and an explicit estimate would require that we measure the actual vol-
umes, which would be computationally very expensive. Here we simply estimate a bulk density rime by
using the following constraints: First, we maximize  for large , consistent with the asymptotic limit of
quasi-spherical graupel-like particles. Second, we enforce  < 1 as a necessary condition for particles. This
yields !rime = 270 kg/m3 for the LDR and !rime = 700 kg/m3 for the HDR simulations. For example, Cober
and List (1993) found rime densities ranging from 150 to 600 kg/m3 in their lab measurements. The low-
est densities occur for low temperatures around −20 ◦C and low impact velocities typical for the collisions
between snowflakes and cloud droplets (vi ≤ 1 m/s). Although the LDR simulations give rise to a random
loose packing of rime with a very low density, the so-called feather rime, as it is observed at very cold condi-
tions below −20◦C, can have even lower densities around 150 kg/m3 (Dong & Hallett, 1989; Macklin, 1962;
Williams & Zhang, 1996). That rime is not necessarily a solid mass is also shown by the electron microscopy
images of Rango et al. (2003), which clearly show an open network of branches within the rime structures
(their Figures 17, 19, and 20).

As expected, the data of Figure 2 shows some scatter, because Dmax can be very variable and is very sensi-
tive to spikes or other protuberances that form during riming at the outer parts of the particle. In the LDR
simulations, it is easier to produce large graupel because LDR makes the particle grow rapidly; hence, large
values of  are possible. For the HDR simulations and especially for large aggregates with a high monomer
number Nagg the simulations do not reach the final graupel stage (i.e.,  ≫ 1) but remain in the regime of
densely rimed snowflakes. A reasonable fit to the data is achieved with

 = tanh
[
a( − 1)p] (5)

with the values for a and p as given in Figure 2. Given the large scatter of the data in each density rime
regime, it seems reasonable to combine LDR and HDR simulations in a single data set.

The impact of the particle habit of the primary crystals on the - relation is shown in Figure 3 for aggre-
gates of dendrites, rosettes, needles, and plates. Similarly to the LDR and HDR simulations, we can conclude

SEIFERT ET AL. 6



The result for the cross-sectional area

Two different regimes: 
1.A fill-in regime in which 

interstitial spaces are filled 
with rime 

2.A linear growth regime in 
which the change of the 
maximum dimension 
dominates the area growth. 

Having m-D and m-A relations 
provides us also with the 
terminal fall velocity. 
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Figure 6. As Figure 5, but for all particle habits combined, and both rime densities (triangles: LDR, open

circles: HDR).

296

297

V-M relation. First, the scatter is significantly reduced for HW10, because this scat-320

ter is mostly caused by the variability in A, which has less of an impact in HW10. Sec-321

ond, whereas KC05 predicts terminal fall velocities that exceed those of spherical grau-322

pel, i.e. V > 1, this e�ect is strongly reduced for HW10. The latter is related to the fact323

that the modeled particles are non-spherical and have significant protuberances leading to324

A < 1 as discussed above.325

3.5 The Fill-In Model Revisited330

The fill-in model provides a simple geometric model for the evolution of the max-331

imum dimension of the particle during the growth by riming, but it does not specify the332

cross-sectional area. Most often a linear interpolation as a function of the rime fraction333

is used between the cross-sectional area of the unrimed aggregate and that of spherical334
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Fall speed during rime growth
● Individual large snowflake of 8 mm 

● Pure rime growth   

● Fall speed slowly approaches that 
of graupel 

● Grey lines are size-equivalent 
reference particles 

● All colored lines are mass-
equivalent particles 

● Transitioning to graupel too quickly 
would lead to a large 
overestimation of the fall speed 
(green line)
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Figure 11. Terminal fall velocity as function of maximum dimension of the simulated particle for four examples of
rimed aggregates, which are also shown in Figure 10. Shown is the terminal fall velocity based on the actual geometry
of the simulated particle (solid black line), the parameterization using the - (red) and - (blue) relations and the
mass-equivalent graupel (green). Note that for those four the ordinate is a mass coordinate because Dmax is the
maximum dimension of the simulated particle and not the parameterized maximum dimension. Also shown are the
terminal fall velocities of the size-equivalent unrimed aggregate (gray, short dashed) and graupel (gray, long dashed) as
used in the normalization. HDR = high density rime; LDR = low density rime.

improved fill-in model using equation (13) for the cross-sectional area provides reasonable estimates for the
terminal fall velocity during the transition from unrimed aggregates to graupel.

Here we have discussed only the results for the aerodynamic formulas following KC05. The results for HW10
are similar (not shown), but the differences between the parameterization are smaller due to the reduced
impact of the cross-sectional area in HW10.

5. Simulations Using a Lagrangian Particle Model
To investigate the impact of the geometry of partially rimed snowflakes on the simulation of a precipitation
event, we use the Lagrangian particle model McSnow in a one-dimensional setup (Brdar & Seifert, 2018).
McSnow predicts the ice mass mi, the rime mass mr , the rime volume Vr , and the number of monomers Ni
for each Lagrangian particle or superparticle. Hence, it provides the necessary information to apply the sim-
ilarity model for each superparticle. Note that the maximum dimension of the aggregate Dagg is determined
by mi alone using a predefined mass-size relationship (see Table 1 of Brdar & Seifert, 2018). Aggregation
is simulated using a Monte Carlo algorithm known as superdroplet method (Shima et al., 2009) in which

SEIFERT ET AL. 13



1D simulations with McSnow

● Ice crystals falling through an atmosphere at rest and growing by  
depositional growth, aggregation and riming. 

● Model setup as in Brdar and Seifert  (2018), but here we set h1=srf.  
Hence, no evaporation.

10

growth by aggregation and the corresponding increase in the terminal fall velocity, but also the mass flux is
reduced compared to SDR, because particles have less time to grow. Maybe even more important than the
increase in fall speed is the fact that many small ice crystals of the SDR simulation have a larger bulk

Figure 6. (left) Schematic of background atmosphere for the 1-D model simulations and (right) the vertical profiles of
temperature and supersaturation over ice. The temperature and relative humidity profiles, the domain top, and the lower
boundary of the riming zone are set fixed with top 5 5 km, h1 5 1 km, h2 5 2 km, a 5 0.0062 K m21 and aRH50:05% m21.

Figure 7. Vertical profiles of the (top left) number density Ni, (top middle) mass density Mi5Iwc, (top right) the number of super-particles per grid box Ns, (bottom
left) number flux density FN, (bottom middle) mass flux density FM, and (bottom right) the monomer flux density Fmono for different simulations with individual pro-
cesses turned on (S: sedimentation, D: water vapor diffusion, A: aggregation, R: riming).

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001167

BRDAR AND SEIFERT 199

 .       

 . Citation: Slavko Brdar and Axel Seifert (2018). McSnow: A Monte-Carlo particle model for riming and aggregation of ice particles in a multidimensional             
microphysical phase space. Journal of Advances in Modeling Earth Systems, 10, 187–206.  



Application in McSnow
Simple idealized 1d simulations of aggregates falling into a liquid layer 

Quite dramatic increase in the precipitation rate due to increased riming!

11
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a) fill-in, linear b) fill-in, sqrt c) similarity

Figure 13. Vertical profiles of the mass flux density in kg/m2s for the three experiments using (a) the

classic fill-in model with a linear interpolation of the cross-sectional area, (b) the fill-in model with the sqrt-

interpolation, Eq. (13), and (c) the similarity model for the geometry of rimed aggregates. The multidimen-

sional particle-size distribution is categorized into unrimed mono-crystals (light blue), unrimed aggregates

(dark blue), rimed snow (green), and graupel-like particles (red). In each diagram the maximum precipitation

rate R
max

and the height level in which graupel-like particles become the dominant hydrometeor type are

given.

456

457

458

459
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461

462

From 2000 m to the surface, we assume a liquid water content of 0.7⇥10�3 kg/m3 and442

a mean cloud droplet radius of 10 µm. In this layer, particles grow by riming, aggrega-443

tion and depositional growth assuming saturation with respect to liquid water. Riming is444

based on the continuous growth model using the bulk e�ciency and the rime density fol-445

lowing Cober and List [1993]. The upper boundary condition is set to an ice water content446

of 0.1⇥10�3 kg/m3 and a number density of 500⇥103 m�3 as primary crystals following447

a gamma distribution with a shape parameter of 2. Note that there is no feedback of the448

particle growth on the environment, and thus neither the supersaturation nor the liquid449

water content change throughout the simulation. We use 250 vertical levels with a verti-450

cal grid spacing of 20 m and the model time step is 5 s for sedimentation and collisional451

growth, and 1 s for deposition and riming. The initial multiplicity of the super-particles is452

5 ⇥105. All simulations are performed for 10 h simulation time and the system reaches a453

stationary state after approximately 5 h. Hence, in the following we show results that are454

averaged over the last 5 h of the simulations.455

Figure 13 shows the vertical profiles of the vertical mass flux for several hydrom-467

eteor classes. Although McSnow does not require any a priori hydrometeor categories,468

it is convenient to classify the multi-dimensional particle size distribution as unrimed469

–24–
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Application in McSnow
Simple idealized 1d simulations of aggregates falling into a liquid layer 

More large particles and no artificial modes for similarity model.
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a) fill-in, linear b) fill-in, sqrt c) similarity

Figure 15. Particle size distribution for all particles (black line) and conditioned on rime fraction (colored

lines) in a height between 1400 m and 1600 m above ground.

535

536

a) fill-in, linear b) fill-in, sqrt c) similarity

Figure 16. Particle size distribution for all particles (black line) and conditioned on rime density (colored

lines) in a height between 200 m and 400 m above ground.

537

538

in the previous section. However, the e�ect on rime density is small and nearly negligible522

for our simulations.523

In summary, the simulations with the Lagrangian particle model reveal that the in-524

crease of the maximum size of partially rimed snowflakes during the early stage of rim-525

ing is important. The simulations clearly show that it has a first-order e�ect on the rim-526

ing rate and ultimately even on the precipitation rate at ground level. The attempt to im-527

prove the fill-in model by a more appropriate parameterization of the cross-sectional area528

is therefore futile, because it misses this first-order e�ect and can improve only the termi-529

nal velocity and secondary properties like the rime density. The similarity model, which530

describes the snow-to-graupel transition with smooth and continuously di�erentiable equa-531
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Figure 15. Particle size distribution for all particles (black line) and conditioned on rime fraction (colored

lines) in a height between 1400 m and 1600 m above ground.
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Figure 16. Particle size distribution for all particles (black line) and conditioned on rime density (colored

lines) in a height between 200 m and 400 m above ground.
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Application in McSnow
Simple idealized 1d simulations of aggregates falling into a liquid layer 

The rime density changes due to the different fall speed.
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Figure 15. Particle size distribution for all particles (black line) and conditioned on density rime (colored lines) in a height between 1,400 and 1,600 m
aboveground.

part of the domain, and therefore, all three show the same transition from primary crystals to aggregates. In
the liquid water layer, the mass flux increases more rapidly for two reasons. First, riming becomes active and
leads to an increase in ice mass. Second, depositional growth becomes more efficient because the supersat-
uration over ice increases due to the assumption of water saturation in that layer. The differences between
the linear fill-in model and the square root interpolation are small and not significant. Using the similarity
model for the geometry of rimed snowflakes leads to an even more rapid increase in mass flux and faster
transition to graupel. This results in a higher maximum (surface) precipitation rate of 20.8 mm/hr for the
similarity model compared to 12.11 and 12.36 mm/hr for the linear and square root fill-in model, respec-
tively. For the fill-in models, graupel-like particle become the dominant hydrometeor type at a height of 500
m, whereas this already happens at 1,000-m height for the similarity model. Overall, this is a drastic effect
of the similarity model and suggests that an important rain formation process is significantly affected by the
particles geometry.

The differences between the different models can be explained as follows: The similarity model leads to
a larger maximum dimension during rime growth compared to the fill-in model. This increase in particle
size directly affects the collision kernel, leading to an increase in the riming rate, and thus, the mass flux
increases more rapidly. The decrease in the terminal fall velocity by the similarity model does also enter
the collision kernel but is fully compensated by the increase in the residence time of the snowflakes in the
liquid layer. This also explains that there is no significant difference between the linear and square root
fill-in model, although the latter has significantly lower terminal fall velocity during the initial riming stage.
The fact that the similarity model leads to a significant increase in the bulk riming rate is confirmed in
Figure 14, which shows that also the bulk deposition rate is significantly increased for the similarity model.

Figure 16. Particle size distribution for all particles (black line) and conditioned on density rime (colored lines) in a height between 200 and 400 m
aboveground.
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Conclusions
● We developed a new parameterization for the geometry of rimed snowflakes 

based on explicit simulations using an aggregation-and-riming model. 

● The parameterization is an alternative to the classic fill-in model, which 
describes the graupel formation as a two-stage process. 

● Application of the new snow geometry in a Lagrangian particle model leads to 
a quite dramatic increase in the precipitation rate. 

● This is because the riming rate has a nonlinear dependency on the size of the 
particle. Hence, size growth increases riming increases size growth etc. 

● Note that our treatment of the snowflake habit can hardly be applied in bulk or 
spectral bin models, because it requires the knowledge of the size of the 
unrimed crystal inside of each individual partially rimed snowflake. 

● Hence, Lagrangian particle models provide completely new opportunities for 
understanding cloud processes.
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