

The particle-based mixed-phase cloud microphysics model McSnow

Workshop on Eulerian vs. Lagrangian methods for cloud microphysics, Cracow, 15.-17. April 2019

Christoph Siewert & Axel Seifert

6

Simulation-based parametrization development

Christoph Siewert, Jeremie Bec and Giorgio Krstulovic, Steady-state condensation of droplets in turbulent flow, JFM 810, pp. 254-280, 2017

6

Current status of microphysical modeling

- Current simplifications: •
 - fixed form of size distribution ٠

$$f(x) = A x^{\nu} e^{-\lambda x^{\mu}}$$

categorization ٠

Locatelli & Hobbs 74

Idea: continuous particle-based model ٠

Coupling to NWP model ICON

new online trajectory model for ICON

Zängl et al. 2015

non-hydrostatic equations on triangular grid \rightarrow in/out and interpolation complex saturation adjustment \rightarrow keep cloud water in the bulk total momentum: moist air + hydrometeors

 \rightarrow coupling issue?

Idealized 2D warm bubble

Instability in Monte-Carlo collision method

Piggy-backing: How not to do

Idea: Start with passive McSnow

 q_c stays in bulk (saturation adjustment) \rightarrow not duplicate T, q_v , q_c , q_{nc} (just other hydrometeors)

But if schemes behave very differently, not conserving mass becomes an issue

Next step: duplicate also T, q_v, q_c, q_{nc} (not u,v,w, ρ)? ICON uses barycentric (total) ρ ,u,v,w in conservation equation q_x << q_a, but q_xw_x ~ q_aw_a \rightarrow hydrometeor vertical momentum not negligible

Comparison to 2-Moment bulk scheme

A super-particle evolution

→ Particle based approach allows to look at individual particles for detailed understanding

Single Particle melting in sub-saturated air

3D technically works but, reach computational limits

Performance issues:

- load-imbalance
- collision time-step

Open questions:

- size of collision box
- how-to initialize/sample at creation
- etc..

Partial solution:

- merging in all single-dimensions if N_{sp} > 100

16.04.2019

 \rightarrow Next slide, rime fraction in 3D

Conclusions

- Goal:
 - Understand and parametrize better mixed-phase microphysics
- \rightarrow Need for "microphysics-resolving" model
- Approach:
 - Developed the particle-based mixed-phase particle model McSnow
 - Developed trajectory model for ICON
- Results:
 - Approach is feasible on storm-scale
 - Initial analysis shows potential
- ToDo:
 - Performance issues
 - Represent geometric variability

DWD

